Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Design of an Automotive Grade Controller for In-Cylinder Pressure Based Engine Control Development

2007-04-16
2007-01-0774
This paper describes a new tool to capture cylinder pressure information, calculate combustion parameters, and implement control algorithms. There are numerous instrumentation and prototyping systems which can provide some or all of this capability. The Cylinder Pressure Development Controller (CPDC) is unique in that it uses advanced high volume automotive grade circuitry, packaging, and software methodologies. This approach provides insight regarding the implementation of cylinder pressure based controls in a production engine management system. A high performance data acquisition system is described along with a data reduction technique to minimize data processing requirements. The CPDC software architecture is discussed along with model-based algorithm development and autocoding. Finally, CPDC calculated combustion parameters are compared with those from a well established combustion analysis system and thermodynamic simulations.
Technical Paper

Non-Intrusive Engine Speed Sensor

2007-04-16
2007-01-0960
In the field of vehicle diagnostics accurate instantaneous engine speed information enables the detection and diagnosis of many engine problems, even subtle ones. Currently, there is a limited choice in the ways of obtaining such information. For example, it is known that one can tap into the crank sensor wiring, or use a separate, intrusive method, such as mounting a sensor in the bell housing to sense the rotation of the ring gear. However, the shortcomings of these approaches are locating and gaining access to the crank sensor connector, the location of which varies from vehicle to vehicle. Thus, authors proposed a novel, robust and manufacturing friendly speed sensor. The concept is based on the Villari effect. The sensor, which is attached to the front end of the engine crankshaft, consists of a coil of magnetostrictive wire supplied with AC current. During engine rotation the magnetostrictive wire become stressed due to centrifugal force.
Technical Paper

Design and Development of a 2-Step Rocker Arm

2007-04-16
2007-01-1285
2-Step variable-valve lift and timing is a high-value technology for the further development of automotive internal combustion engines. 2-Step valve train systems provide improved engine efficiency, emissions, and performance using components that are relatively low-cost and compatible with new and existing cylinder heads. This paper describes the design and development of a 2-Step rocker arm using a combination of analytical tools and physical testing. Prototype hardware was built to confirm the design. Performance and durability test results are presented.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

Throttle Icing: Understanding the Icing Mechanism and Effects of Various Throttle Features

2008-04-14
2008-01-0439
Some Electronic Throttle Control (ETC) Air Control Valves (ACV) on automotive internal combustion engines are susceptible to icing of the throttle valve. Ice formation can result in an increase in torque required to open or close the valve. Laboratory studies were conducted to improve the understanding of throttle valve icing on electronic throttle control valves with both aluminum and composite (plastic) bodies over various bore sizes (4 cylinder to 8 cylinder engines). Study results indicated that ice compression at the bore and valve gap, not ice adhesion, is the major contributor to the ETC-ACV icing phenomenon. In addition, testing of parts with various bore sizes, orientations and surface cleanliness resulted in further understanding of the icing issue.
Technical Paper

Controller for Rapid Development of Advanced Mode Combustion Algorithms using Cylinder Pressure Feedback

2008-10-20
2008-21-0015
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

A System Approach to the Drag Performance of Disc Brake Caliper

2003-10-19
2003-01-3300
Among the performance concerns in brake design, drag and fluid displacement are getting more attention in the requirement definition. High drag not only affects fuel efficiency and lining life, it is also a contributing factor to rotor thickness variation and brake pulsation. In this paper, a system approach to drag performance of a disc brake caliper is presented. A one-dimensional simulation model, which considers all the significant factors, including lining stiffness and hysteresis, housing stiffness, seal/groove characteristic, and stick-slide behavior between the seal and piston, is developed to capture the interactive impact of each parameter to caliper drag performance. The system model is validated with experimental measurements for caliper fluid displacement and piston retraction. A parameter study is then conducted to investigate the component interactive impact to the drag performance.
Technical Paper

CFRM Concept at Vehicle Idle Conditions

2003-03-03
2003-01-0613
The concept of condenser, fan, and radiator power train cooling module (CFRM) was further evaluated via three-dimensional computational fluid dynamics (CFD) studies in the present paper for vehicle at idle conditions. The analysis shows that the CFRM configuration was more prone to the problem of front-end air re-circulation as compared with the conventional condenser, radiator, and fan power train cooling module (CRFM). The enhanced front-end air re-circulation leads to a higher air temperature passing through the condenser. The higher air temperature, left unimproved, could render the vehicle air conditioning (AC) unit ineffective. The analysis also shows that the front-end air re-circulation can be reduced with an added sealing between the CFRM package and the front of the vehicle, making the CFRM package acceptable at the vehicle idle conditions.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Technical Paper

Low Volatility Fuel Delivery Control during Cold Engine Starts

2005-04-11
2005-01-0639
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

Experimental Evaluation of R134a Emission with Various Hose Constructions

2005-05-10
2005-01-2032
The focus of this paper is to understand, from experimental data, the R134a refrigerant emission rates of various hose materials due to permeation. This paper focuses on four main points for hose assembly emission of R134a: (1) characteristics of hose permeation in response to the effect of oil in R134a and the characteristics of hose permeation of vapor vs. liquid refrigerant; (2) conditioning of the hose material over time to reach steady state R134a emission; (3) the relative contribution of hose permeation and coupling emission to the overall hose assembly refrigerant emission; (4) transient emission rates due to transient temperature and pressure conditions. Studies include hoses with different materials and constructions resulting in various levels of R134a permeation.
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
X