Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Disturbance Rejection Control in Motorcycle that Considers Cooperativeness with the Rider’s Driving Operation

2008-09-09
2008-32-0055
It’ll be expected that tandem riders increase in the future. So, there is a need to improve the motorcycle stability of tandem riding from the perspectives of safety and comfort. In this research, we focus on tandem riding at low speed because the motorcycle especially becomes unstable. In order to improve the stability of a motorcycle after disturbance is input by the passenger’s posture change, we design a front wheel steer control system that assists the rider’s driving operation. And we simulate it. It is necessary to consider cooperation with the rider’s driving operation. In this study, as a means to consider the cooperative control of the man-machine system, the fuzzy logic was applied to this system.
Technical Paper

Cooperative Steer Control on Motorcycle between Rider and Active Support Torque

2009-11-03
2009-32-0060
In this research, we aim at the construction of a steering cooperation-type front-wheel steering control system to reduce the rider's steering load by stabilizing the behavior of the motorcycle when turbulence in the direction of a roll occurs during low-speed driving. Finally, a front-wheel steering control system that considers cooperation with a rider's steering based on the experimental result is constructed, and the utility is verified by simulation.
Technical Paper

Evaluation of Feeling of Pulse for Cruiser-type Motorcycle

2009-11-03
2009-32-0131
This paper describes the relationship between the rider's evaluation of feeling of pulse and the seat vibration of the cruiser-type motorcycle. A simulated running condition was created to measure the seat vibration and engine speed. Next, the seat vibration was reproduced on the hydrodynamic shaker. Finally, we examined the influence of which order of rotational speed effects evaluation of feeling of pulse in a forced vibration test. As a result, it is known that 0.5th and 1st orders of seat vibration contribute to evaluation of feeling of pulse near 1,500 to 2,000 rpm of engine rotation.
X