Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Dynamic Characteristics of a Mount Combining Viscous Fluid With Air-Spring

2007-05-15
2007-01-2360
A hydraulic excavator cab is mounted on a viscous mount. When the weight of the cab is heavy, the neutral position is depressed. Besides, at a large load, the cab receives compressive repulsion power of oil thereby restricting its damping ability. In addition, it is difficult to obtain an arbitrary damping performance separately. To overcome these problems, which combines the shear force due to viscous fluid with elastic force due to air-spring a mount, was invented. The neutral position of composite mount is adjustable by air-spring according to the weight. And viscous oil is not sealed up. So, viscous oil can flow at a large load. Therefore, it may not experience the repulsion force of oil in spite of a large load. Moreover, the generated elastic force is adjustable according to change of pressure in the air spring, and the generated damping force is adjustable according to change of viscous fluid's viscosity or volume.
Technical Paper

Study on Low Speed Judder of Wave Type Brake Discs for Motorcycles

2006-11-13
2006-32-0026
This study discussed the mechanism of the low speed judder for wave type brake disc developed newly for recent motorcycles. Wavy disc was examined to investigate the effect of wave configurations on the BTV (Brake Torque Variation) behavior. Torque amplitude in braking was compared with respect to the revolution order which represented the multiple number of the number of revolutions. To explain the mechanism at the mode showing largest BTV, the elastic deformation of the pad was analyzed by finite element method concerning geometrical nonlinearity with commercial code. This study found that most crucial BTV appeared on low speed judder was observed at the 3 rd peaks on the revolution order. Test data showed that this crucial BTV was related with the number of waves at the disc periphery, and caused by the indentation of the pad into notched part at disc periphery.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

A Measures Planning Method by Analysis of Contribution of the Vibration Transfer Path

2009-05-19
2009-01-2197
This paper describes a proposal of techniques on Transfer Path Analysis (TPA) to analyze transmission of vibration among the components in a complex structure. This proposal is evolved from the previous one [1] in the dimension which dominates the quality of the analysis in automotive body structure by TPA. The proper coordinate transformation was introduced to resolve the troublesome process on the application of the body structure in the previous proposal. The complications are caused by the treatment with a lot of transfer functions and transmitted forces at the conjunctions that are complexly assembled with many adjacent nodes. Dimension of the analytical region is expanded from two to three in this study. That is, from the cross section of interface of components to the structure itself where the vibration transmits between two components.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

2009-05-19
2009-01-2107
Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Study on Noise Generation Mechanism for Dry Hybrid Type CVT - Influence of Block Motions and Surface Roughness of Pulley on Sound Pressure

2004-03-08
2004-01-0477
In order to reveal the mechanism of noise generation from CVT (Continuously Variable Transmissions) using a dry hybrid V-belt, the power spectrum of sound from a two-pulley CVT system and its variation with respect to rotational speed were measured. The experimental results showed that the frequency of the first peak in the power spectrum of the observed sound linearly increased with increasing the rotational speed of the pulley. The sound frequency of the first peak coincides with the frequency derived from the belt block pitch and the belt speed. Then, sound intensity analyses were conducted to identify noise sources of CVT. The experimental results reveal that unpleasant sound whose frequency is high occurs due to the collision or slip between CVT blocks and the pulley groove at the entrance and the exit of V-groove pulleys. Pulley surface roughness strongly affects the noise level. Additionally, the location of noise source varies due to surface roughness of the pulley groove.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Reduction of Heavy Duty Diesel Engine Emission and Fuel Economy with Multi-Objective Genetic Algorithm and Phenomenological Model

2004-03-08
2004-01-0531
In this study, a system to perform a parameter search of heavy-duty diesel engines is proposed. Recently, it has become essential to use design methodologies including computer simulations for diesel engines that have small amounts of NOx and SOOT while maintaining reasonable fuel economy. For this purpose, multi-objective optimization techniques should be used. Multi-objective optimization problems have several types of objectives and they should be minimized or maximized at the same time. There is often a trade-off relationship between objects and derivation of the Pareto optimum solutions that express the relationship between the objects is one of the goals in this case. The proposed system consists of a multi-objective genetic algorithm (MOGA) and phenomenological model. MOGA has strong search capability for Pareto optimum solutions. However, MOGA requires a large number of iterations.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Permanent Deflection of Two-Layered Clutch Plates - - How to Reduce the Deflection of Two-Layered Clutch Plates -

2004-03-08
2004-01-0740
Two-layered clutch plates manufactured by a new process using BMC show a significant deflection. Two methods solving such deflection were alternatively developed in this study. Changing the composition of the clutch plate appeared to be useless while after-curing on deflected clutch plates was effective. Thermal cycles or high pressure for after-cure did not reduce the deflection. However, applying after-cure with a sloped mold reduce the deflection without increasing the disk density.
Technical Paper

Multi-Objective Optimization of Diesel Engine Emissions and Fuel Economy using Genetic Algorithms and Phenomenological Model

2002-10-21
2002-01-2778
In this paper, the simulation of the multi-objective optimization problem of a diesel engine is performed using the phenomenological model of a diesel engine and the genetic algorithm. The target purpose functions are Specific fuel consumption, NOx, and Soot. The design variable is a shape of injection rate. In this research, we emphasize the following three topics by applying the optimization techniques to an emission problem of a diesel engine. Firstly, the multiple injections control the objectives. Secondly, the multi-objective optimization is very useful in an emission problem. Finally, the phenomenological model has a great advantage for optimization. The developed system is illustrated with the simulation examples.
Technical Paper

Optimization of Manufacturing Process of Glass Fibers/Phenol Composites. Effects of Solidification Conditions, Fiber Length and Additional Materials on their Mechanical Properties

2003-03-03
2003-01-1128
The aim of these experiments is to determine the best way to obtain high mechanical properties for phenol resin and glass fibers based composites. Various ways of fabricating the material were studied, as well as its best composition. The conditions of drying, molding processes were optimized. From the most conventional method, using ethanol as a solvent to newer ones, including continuous ways of processing and the use of water instead of ethanol, a lot of possibilities exist to produce such a material. This paper explains the advantages and drawbacks of a whole range of manufacturing processes.
Technical Paper

Genetic Algorithms Optimization of Diesel Engine Emissions and Fuel Efficiency with Air Swirl, EGR,Injection Timing and Multiple Injections

2003-05-19
2003-01-1853
The present study extends the recently developed HIDECS-GA computer code to optimize diesel engine emissions and fuel economy with the existing techniques, such as exhaust gas recirculation (EGR) and multiple injections. A computational model of diesel engines named HIDECS is incorporated with the genetic algorithm (GA) to solve multi-objective optimization problems related to engine design. The phenomenological model, HIDECS code is used for analyzing the emissions and performance of a diesel engine. An extended Genetic Algorithm called the ‘Neighborhood Cultivation Genetic Algorithm’ (NCGA) is used as an optimizer due to its ability to derive the solutions with high accuracy effectively. In this paper, the HIDECS-NCGA methodology is used to optimize engine emissions and economy, simultaneously. The multiple injection patterns are included, along with the start of injection timing, and EGR rate.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Application of Transfer Path Analysis (TPA) to a Mechanical Structure with a Variety of Transfer Paths

2016-09-27
2016-01-8101
In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
X