Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simultaneous Measurement of Fuel Droplet Deposition Amount and Oil Film Thickness on Spray Impingement Using Double Laser Induced Fluorescence Method

2017-10-08
2017-01-2371
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and collects the Particulate Matter (PM). However, as the operation time of engine increases, PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increasing in pressure loss. Therefore, Post injection has been attracted attention as DPF regeneration method for burning and removing PM in DPF. However, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concerned to deteriorate the sliding property of piston and the thermal efficiency. For this reason, it is necessary to elucidate the mechanism and the behavior that spray impinges lubricating oil film. Therefore, in this study, we aimed to construct model of Computational Fluid Dynamics (CFD) that predicts amount of oil dilution which is concern for post injection in diesel engine, with high accuracy.
Technical Paper

The Spray Feature of Direct Injection Gasoline Engine with Super High Spatial Resolution Photography

2015-09-01
2015-01-1892
In direct injection spark ignition (DISI), spray characteristics such as the penetration, spatial dispersion, droplet size distribution and the spray wall interaction process are extremely important to control the combustion process through the mixture formation process. Furthermore, the spray basic feature including the spatial and temporal changes is the key issue to reduce the Particulate Matter (PM) & HC emissions. In this study, we reveal both of the macroscopic and microscopic structures of the spray dynamics by Super High Spatial Resolution Photography (SHSRP). Furthermore, it is found that the simulated spray structure such as the penetration and droplet size distribution using Computational Fluid Dynamics (CFD) code is well consistent with the experimental results.
Technical Paper

Atomization Model in Port Fuel Injection Spray for Numerical Simulation

2023-09-29
2023-32-0091
Computational Fluid Dynamics (CFD) simulation is widely used in the development and validation of automotive engine performance. In engine simulation, spray breakup submodels are important because spray atomization has a significant influence on mixture formation and the combustion process. However, no breakup models have been developed for the fuel spray with plate-type multi-hole nozzle installed in port fuel injection spark ignition (SI) engines. Therefore, the purpose of this study is to simulate spray formation in port fuel injection precisely. The authors proposed the heterogeneous sheet breakup model for gasoline spray injected from plate type multi-hole nozzle. The novel breakup model was developed by clarifying the phenomenological mechanism of the spray atomization process. In this paper, this model was improved in dispersion characteristics and evaluated by the comparison of the model calculation results with experimental data.
X