Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Time Resolved Exhaust Port Sampling Studies Related to Hydrocarbon Emissions from SI Engines

1998-10-19
982558
The role of post-combustion oxidation in influencing exhaust hydrocarbon emissions from spark ignition engines has been identified as one of the major uncertainties in hydrocarbon emissions research [l]*. While we know that post-combustion oxidation plays a significant role, the factors that control the oxidation are not well known. In order to address some of these issues a research program has been initiated at Drexel University. In preliminary studies, seven gaseous fuels: methane, ethane,ethene,propane,propene, n-butane, 1-butene and their blends were used to examine the effect of fuel structure on exhaust emissions. The results of the studies presented in an earlier paper [2] showed that the effect of fuel structure is manifested through its effect on the post-combustion environment and the associated oxidation process. A combination of factors like temperatures, fuel diffusion and reaction rates were used to examine and explain the exhaust hydrocarbon emission levels.
Technical Paper

Tracer Fuel Injection Studies on Exhaust Port Hydrocarbon Oxidation

1998-10-19
982559
Time resolved exhaust port sampling results show that the gas mixture in the port at exhaust valve closing contains high concentrations of hydrocarbons. These hydrocarbons are mixed with hot in-cylinder gases during blowdown and can react either via gas phase kinetics in the exhaust port/runner system or subsequently on the exhaust catalyst before they are emitted. Studies were conducted on a single cylinder, four stroke engine in our laboratory to determine the interaction between the hot blowdown gases and the hydrocarbons which remain in the exhaust port. A preselected concentration and volume of hydrocarbon tracers (propane, propene, n-butane, and 1-butene) in either oxygen/nitrogen mixtures or pure nitrogen were injected into the exhaust port just behind the exhaust valve to control the initial conditions for any potential oxidation in the port.
Technical Paper

Prediction of Pre-ignition Reactivity and Ignition Delay for HCCI Using a Reduced Chemical Kinetic Model

2001-03-05
2001-01-1025
Homogeneous Charge Compression Ignition (HCCI) engines have the possibility of low NOx and particulate emissions and high fuel efficiencies. In HCCI the oxidation chemistry determines the auto-ignition timing, the heat release rate, the reaction intermediates, and the ultimate products of combustion. This paper reports an initial effort to apply our reduced chemical kinetic model to HCCI processes. The model was developed to study the pre-ignition characteristics (pre-ignition heat release and start of ignition) of primary reference fuels (PRF) and includes 29 reactions and 20 active species. The only modifications to the model were to make the proscribed adjustments to the fuel specific rate constants, and to enhance the H2O2 decomposition rate to agree with published data.
X