Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

A Skeletal Chemical Kinetic Model for the HCCI Combustion Process

2002-03-04
2002-01-0423
In Homogeneous Charge Compression Ignition (HCCI) engines, fuel oxidation chemistry determines the auto-ignition timing, the heat release, the reaction intermediates, and the ultimate products of combustion. Therefore a model that correctly simulates fuel oxidation at these conditions would be a useful design tool. Detailed models of hydrocarbon fuel oxidation, consisting of hundreds of chemical species and thousands of reactions, when coupled with engine transport process models, require tremendous computational resources. A way to lessen the burden is to use a “skeletal” reaction model, containing only tens of species and reactions. This paper reports an initial effort to extend our skeletal chemical kinetic model of pre-ignition through the entire HCCI combustion process. The model was developed from our existing preignition model, which has 29 reactions and 20 active species, to yield a new model with 69 reactions and 45 active species.
X