Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Application of the Hybrid FE-SEA Method to Predict Sound Transmission Through Complex Sealing Systems

2011-05-17
2011-01-1708
Currently, the use of numerical and analytical tools during a vehicle development is extensive in the automotive industry. This assures that the required performance levels can be achieved from the early stages of development. However, there are some aspects of the vibro-acoustic performance of a vehicle that are rarely assessed through numerical or analytical analysis. An example is the modeling of sound transmission through vehicle sealing systems. In this case, most of the investigations have been done experimentally, and the analytical models available are not sufficiently accurate. In this paper, the modeling of the sound transmission through a vehicle door seal is presented. The study is an extension of a previous work in which the applicability of the Hybrid FE-SEA method was demonstrated for predicting the TL of sealing elements.
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

2013-04-08
2013-01-0920
For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
Technical Paper

Modeling process and validation of Hybrid FE-SEA method to structure-borne noise paths in a trimmed automotive vehicle

2008-03-30
2008-36-0574
The Finite Element Method (FEM) and the Statistical Energy Analysis (SEA) are standard methods in the automotive industry for the prediction of vibrational and acoustical response of vehicles. However, both methods are not capable of handling the so called “mid frequency problem”, where both short and long wavelength components are present in the same system. A Hybrid method has been recently proposed that rigorously couples SEA and FEM. In this work, the Hybrid FE-SEA method is used to predict interior noise levels in a trimmed full vehicle due to broadband structure-borne excitation from 200Hz to 1000Hz. The process includes the partitioning of the full vehicle into stiff components described with FE and modally dense components described with SEA. It is also demonstrated how detailed local FE models can be used to improve SEA descriptions of car panels and couplings.
Technical Paper

Use of a Hybrid FE-SEA Model of a Trimmed Vehicle to Improve the Design for Interior Noise

2009-05-19
2009-01-2199
The Hybrid FE-SEA method has been used to create a fast/efficient model to predict structure-borne noise propagation in a fully trimmed vehicle over the frequency range from 200 to 1000 Hz. The method was highlighted along with the modeling process and extensive validation results in previously published papers [1-3]. The use of the model to analyze structure-borne noise in the full vehicle, and to design and evaluate the impact of counter measures was described. In this study, the Hybrid FE-SEA method is used identify potential design changes to improve the acoustic performance. First, results from a noise path analysis are used to identify key contributors to interior noise. Next, potential design strategies for reducing the interior noise are introduced along with implications on the model. Finally, sample prediction results illustrating the impact of design changes on interior noise levels are shown along with experimental validation results.
Technical Paper

A Fast and Fully Automated Cartesian Meshing Solution for Dirty CAD Geometries

2008-12-02
2008-01-2998
The most time-consuming step in an external aerodynamics or underhood CFD process is that of generating a usable mesh from CAD data. Conventional mesh generators require a water-tight surface mesh before they can generate the volume mesh. Typical CAD surface data available for mesh generation is far from satisfactory for volume mesh creation: no node-to-node matching between mating parts, minute gaps, overlapping surfaces, overlapping parts, etc. To clean up this kind of data to a level that can be used for volume mesh creation requires a lot of manual work that could take a couple of weeks or more to accomplish. This paper presents a fast and fully automated, Cartesian cell dominated projected mesh generation algorithm used in CFD-VisCART that eliminates the need for CAD data cleaning, thus shaving off weeks worth of time off the design cycle.
Technical Paper

Predicting the Acoustics of Squeak and Rattle

2011-05-17
2011-01-1585
This paper discusses the development of a computationally efficient numerical method for predicting the acoustics of rattle events upfront in the design cycle. The method combines Finite Elements, Boundary Elements and SEA and enables the loudness of a large number of rattle events to be efficiently predicted across a broad frequency range. A low frequency random vibro-acoustic model is used in conjunction with various closed form analytical expressions in order to quickly predict impact probabilities and locations. An existing method has been extended to estimate the statistics of the contact forces across a broad frequency range. Finally, broadband acoustic radiation is predicted using standard low, mid and high frequency vibro-acoustic methods and used to estimate impact loudness. The approach is discussed and a number of validation examples are presented.
Technical Paper

Virtual Car Prototyping in Realistic Driving Environment: Examples of Deep Water Crossing and Heavy Rain Management

2018-04-03
2018-01-1065
To develop future electrical and autonomous cars, it is important to virtually test the car in real driving circumstances, including on wet road or under heavy rain conditions. It is especially critical to check that no water prevents the sensors of the driving assistance systems or autonomous cars from working properly, that water intrusion does not disturb electrical equipment, and that the driver’s visibility remains good under rain condition. ESI Group has introduced the Finite Point Method (FPM) in Virtual Performance Solution (VPS) as a CFD mesh free module in order to simulate the interaction of water with the car structure. It was initially specialized for tank sloshing and water drain applications for car closures and is now extended to other application fields. The objective is to enable a holistic prediction of the car behavior under realistic driving conditions, using a virtual car prototype.
Technical Paper

Validation of Combining Compressible CFD Results with Statistical Energy Analysis for Vehicle Interior Noise Simulation

2022-06-15
2022-01-0936
Quality and refinement are of paramount importance for luxury vehicles. The rapid electrification of the automotive industry has increased the contribution of aeroacoustics to the consumer perception of sound quality. The ability to predict whole vehicle aeroacoustic interior noise is essential in the development of vehicles with an extraordinary acoustic environment. This publication summarises the development of a process to combine lattice Boltzmann computational fluid dynamics simulations, with a whole vehicle statistical energy analysis model, to predict the aeroacoustic contribution from all relevant sources and paths. The ability to quantify the relative contribution of glazing panels and path modifications was also investigated. The whole vehicle aeroacoustic interior noise predictions developed, were found to be within 2dB(A) of comparable test vehicle wind tunnel measurements, across a broad frequency range (250-5000 Hz).
Technical Paper

A Novel Approach for High Frequency Interior Noise Prediction

2018-04-03
2018-01-0148
Since Statistical Energy Analysis (SEA) is based on lumped parameters, acoustic responses predicted by SEA are spatially discontinuous. However, in many practical applications, the ability to predict spatially continuous energy flow is useful for guiding the design of systems with improved acoustical characteristics. A new approach, utilizing integral equations derived from energy flow concepts, is developed to predict the continuous variation of acoustic field such as sound pressure level in the interior of acoustic domains using structural response predicted by SEA. The computer code developed based on energy flow boundary integral equations is initially validated by analyzing sound propagation in a duct.
Technical Paper

Wind Noise Source Characterization and How It Can Be Used To Predict Vehicle Interior Noise

2014-06-30
2014-01-2052
Recent developments in the prediction of the contribution of wind noise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This paper discusses in detail these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA.
Technical Paper

An Acoustic Target Setting and Cascading Method for Vehicle Trim Part Design

2019-06-05
2019-01-1581
One of the major concerns in the vehicle trim part design is the acoustic targets, which are generally defined by absorption area or coefficients, and sound transmission loss (STL) or sound insertion loss (SIL). The breaking down of acoustic targets in vehicle design, which is generally referred to as cascading, is the process of determining the trim part acoustic targets so as to satisfy full vehicle acoustic performance. In many cases, these targets are determined by experience or by subjective evaluation. Simulation based transfer path analysis (TPA), which traces the energy flow from source, through a set of paths to a given receiver, provides a systematic solution of this problem. Guided by TPA, this paper proposes a component level target setting approach that is based on the statistical energy analysis (SEA), an efficient method for vehicle NVH analysis in mid and high frequencies.
Technical Paper

Combining Modeling Methods to Accurately Predict Wind Noise Contribution

2015-06-15
2015-01-2326
Recent developments in the prediction of the contribution of wind noise to the interior SPL have opened a realm of new possibilities. The main physical mechanisms related to noise generation within a turbulent flow and the vibro-acoustic transmission through the vehicle greenhouse is nowadays better understood. Several simulation methods such as CFD, FEM, BEM, FE/SEA Coupled and SEA can be coupled together to represent the physical phenomena involved. The main objective being to properly represent the convective and acoustic component within the turbulent flow to ensure proper computation of the wind noise contribution to the interior SPL of a vehicle.
Technical Paper

Aero-Vibro-Acoustic Simulation Methodologies for Vehicle Wind Noise Reduction

2019-01-09
2019-26-0202
Wind noise is a major contributor to vehicle noise and a very common consumer complaint for overall vehicle quality [1]. The reduction of wind noise is becoming even more important as powertrain noise is reduced or eliminated (by conversion to hybrid and electric vehicles) and as the importance of quiet interior environment for hands-free device use and voice activation systems becomes more pronounced. In contrast to other noise sources such as tires, engine, intake, exhaust or other component noise whose acoustic loads may be measured in a direct and standardized way with the proper equipment, wind noise is very difficult to predict because the acoustic part of wind noise is a small component of overall fluctuating pressures. It is very challenging to either directly measure or to simulate the acoustic component of fluctuating exterior pressures using CFD (Computational Fluid Dynamics) without a great deal of specialized experience in this area.
Journal Article

A Vehicle Pass-by Noise Prediction Method Using Ray Tracing with Diffraction to Extend Simulation Capabilities to High Frequencies

2021-09-22
2021-26-0264
Predicting Vehicle Pass-by noise using simulation enables efficient development of adequate countermeasures to meet legislative targets while reducing development time and the number of physical trial-and-error prototypes and tests. It has already been shown that deterministic simulation methods such as the Boundary Element Method (BEM), which may also include directivity of sources, can support the trim package optimization process for Pass-by noise, especially for low to mid frequencies. At higher frequencies, the Ray Tracing technique, can represent an efficient alternate providing options to trade off speed versus accuracy compared to wave-based technique such as FE/BEM. This paper presents a Ray Tracing approach with high order diffraction effect. Moreover, source directivity and sound package effect are accounted for.
Journal Article

A Pass-By Noise Prediction Method Based on Source-Path-Receiver Approach Combining Simulation and Test Data

2019-01-09
2019-26-0188
Optimizing noise control treatments in the early design phase is crucial to meet new strict regulations for exterior vehicle noise. Contribution analysis of the different sources to the exterior acoustic performance plays an important role in prioritizing design changes. A method to predict Pass-by noise performance of a car, based on source-path-receiver approach, combining data coming from simulation and experimental campaigns, is presented along with its validation. With this method the effect of trim and sound package on exterior noise can be predicted and optimized.
Technical Paper

A Simulation Methodology to Design the AVAS System to Meet Safety Regulations and Create the Expected Perception for the Vulnerable Road User

2024-01-16
2024-26-0230
Designing an effective AVAS system, not only to meet safety regulations, but also to create the expected perception for the vulnerable road user, relies on knowledge of the acoustic transfer function between the sound actuator and the receiver. It is preferable that the acoustic transfer function be as constant as possible to allow transferring the sound designed by the car OEM to ensure the safety of vulnerable road users while conveying the proper brand image. In this paper three different methodologies for the acoustic transfer function calculations are presented and compared in terms of accuracy and calculation time: classic Boundary Element method, H-Matrix BEM accelerated method and Ray tracing method. An example of binaural listening experience at different certification positions in the modeled simulated space is also presented.
Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Technical Paper

Harmonizing Safety Regulations and Perception: A Simulation Methodology for AVAS System Design

2024-06-12
2024-01-2915
The development of an effective Acoustic Vehicle Alert System (AVAS) is not solely about adhering to safety regulations; it also involves crafting an auditory experience that aligns with the expectations of vulnerable road users. To achieve this, a deep understanding of the acoustic transfer function is essential, as it defines the relationship between the sound emitter (the speaker inside the vehicle) and the receiver (the vulnerable road user). Maintaining the constancy of this acoustic transfer function is paramount, as it ensures that the sound emitted by the vehicle aligns with the intended safety cues and brand identity that is defined by the car manufacturer. In this research paper, three distinct methodologies for calculating the acoustic transfer function are presented: the classical Boundary Element method, the H-Matrix BEM accelerated method, and the Ray tracing method.
Technical Paper

Coupled Boundary Element and Poro-Elastic Element Simulation Approach to Designing Effective Acoustic Encapsulation for Vehicle Components

2024-06-12
2024-01-2956
To meet vehicle interior noise targets and expectations, components including those related to electric vehicles (EVs) can effectively be treated at the source with an encapsulation approach, preventing acoustic and vibration sources from propagating through multiple paths into the vehicle interior. Encapsulation can be especially useful when dealing with tonal noise sources in EVs which are common for electrical components. These treatments involve materials that block noise and vibration at its source but add weight and cost to vehicles – optimization and ensuring the material used is minimized but efficient in reducing noise everywhere where it is applied is critically important. Testing is important to confirm source levels and verify performance of some proposed configurations, but ideal encapsulation treatments are complex and cannot be efficiently achieved by trial-and-error testing.
X