Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Development and Experimental Validation of a Fast Spray Ignition Model for Diesel Engines Using Insights from CFD Spray Calculations

2017-03-28
2017-01-0812
Modern Diesel engines have become ever more complex systems with many degrees of freedom. Simultaneously, with increasing computational power, simulations of engines have become more popular, and can be used to find the optimum set up of engine operation parameters which result in the desired point in the emission-efficiency trade off. With increasing number of engine operation parameter combinations, the number of calculations increase exponentially. Therefore, adequate models for combustion and emissions with limited calculation costs are required. For obvious reasons, the accuracy of the ignition timing is a key point for the following combustion and emission model quality. Furthermore, the combination of mixing and chemical processes during the ignition delay is very challenging to model in a fast way for a wide range of operation conditions.
Technical Paper

Assessment of Two Premixed LES Combustion Models in an Engine-Like Geometry

2018-04-03
2018-01-0176
Large Eddy Simulation (LES) of premixed turbulent combustion in a confined cylinder setup at engine relevant conditions has been carried out for three different initial turbulence intensities, mimicking different flame propagation regimes. Direct Numerical Simulation (DNS) of the setup under investigation provides the reference data to be compared against. The DNS fields have been filtered on the LES grid and are used as initial conditions for the LES at onset of combustion, guaranteeing a direct comparability of the single realizations between the modeled and reference data. Two different combustion models, the G-Equation and CMC-premixed (Conditional Moment Closure) are compared with respect to their predictive capabilities as well as their usability and computational cost. While the G-Equation is a widely adopted approach for industrial applications and usually relies on a tunable turbulent flame speed closure, the novel LES-CMC comes as a tuning parameter free model.
Technical Paper

THE Post Injection: Coalescence of 3D CFD-CMC Simulation, 2D Visualizations in a Constant Volume Chamber and Application in a Modern Passenger Car Diesel Engine

2015-09-06
2015-24-2515
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in NOx emissions. However, an accurate, widely applicable rule of how to parameterize a post injection such that it provides a maximum reduction of PM emissions does not exist. Moreover, the underlying mechanisms are not thoroughly understood. In past research, the underlying mechanisms have been investigated in engine experiments, in constant volume chambers and also using detailed 3D CFD-CMC simulations. It has been observed that soot reduction due to a post injection is mainly due to two reasons: increased turbulence from the post injection during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. Those studies do not show a significant temperature rise caused by the post injection.
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Technical Paper

Investigation of the Ignition Process of Pilot Injections Using CFD

2019-09-09
2019-24-0129
State of the art high-pressure fuel injectors offer the ability to inject multiple times per cycle, and can reach very low fuel amounts per injection event. This behaviour allows the application of pilot injections in diesel engine applications or dual fuel engines. In both diesel and dual fuel engines, the amount of pilot fuel affects the engine efficiency. The understanding of the underlying ignition mechanism of the pilot fuel is required to optimize injection parameters and the engines’ fuel consumption. The present work focuses on the differences of ignition mechanisms between long and short injections. The investigation has been performed numerically, using CFD with a well-proven combustion model. The setup used employs a well characterized single orifice injector, injecting into a high temperature, pressurized environment with a composition of 15% oxygen.
X