Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

2002-11-19
2002-01-3438
The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

Elastomer Characterization for Digital Prototyping and Its Validation through Physical Testing

2017-01-10
2017-26-0181
There is an increased use of elastomers in the automotive industry for sealing, noise isolation, load dampening, insulation, etc., because of their key properties of elasticity and resilience. Elastomers are used in supercharger application for dampening the torsional fluctuation from the engine, to reduce noise issues. Finite element modeling of elastomers is challenging because of its non-linear behavior in different loading directions. It also undergoes very large elemental deformation (~up to 200%), which results in additional complexities in getting numerical convergence. Finally, it also exhibits viscous and elastic behavior simultaneously (viscoelastic effect) and it undergoes softening with progressive cyclic loading (Mullins effect). The present study deals with the characterization of elastomers for its modeling in commercial finite element software packages and verification of some predicted design parameters with physical testing.
Technical Paper

Downspeeding a Light Duty Diesel Passenger Car with a Combined Supercharger and Turbocharger Boosting System to Improve Vehicle Drive Cycle Fuel Economy

2013-04-08
2013-01-0932
Downsizing and downspeeding have become accepted strategies to reduce fuel consumption and criteria pollutants for automotive engines. Engine boosting is required to increase specific power density in order to retain acceptable vehicle performance. Single-stage boosting has been sufficient for previous requirements, but as customers and governments mandate lower fuel consumption and reduced emissions, two-stage boosting will be required for downsized and downsped engines in order to maintain performance feel for common class B, C, and D vehicles. A 1.6L-I4 diesel engine model was created, and three different two-stage boosting systems were explored through engine and vehicle level simulation to reflect the industry's current view of the limit of downsizing without degrading combustion efficiency with cylinder volumes below 400 cm₃. Some current engines are already at this size, so downspeeding will become much more important for reducing fuel consumption in the future.
Technical Paper

Development of a Switching Roller Finger Follower for Cylinder Deactivation in Gasoline Engine Applications

2013-04-08
2013-01-0589
A cylinder deactivation system has been developed for use on dual overhead camshaft (DOHC), roller finger follower valvetrain engine applications. Cylinder deactivation is emerging as an effective means to reduce fuel consumption in vehicles, especially those equipped with V6 or V8 engines. This paper addresses a new system that accomplishes this function through the use of a switching roller finger follower (SRFF). This system includes key design features that allow application of the SRFF without affecting overall width, height, or length of DOHC engines. Emphasis was placed on reducing the moment of inertia over the SRFF pivot without compromising rocker arm stiffness. The switching mechanism for transitioning between normal and deactivated operation is hydraulically actuated with engine oil. The switching windows are identified in terms of temperature, pressure, and engine speed. High engine speed test results show stable valvetrain dynamics above 7000 rpm engine speed.
Technical Paper

Elementary Design Considerations for Valve Gears

1982-02-01
821574
The fundamental features in designing a valve gear are discussed in this paper. Covered are: valve types; operating mechanisms; valve gear design considerations; and component design considerations such as valves, valve guides, spring retainers and locks, the cam follower, the camshaft, and valve springs.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Switching Response Optimization for Cylinder Deactivation with Type II Passenger Car Applications

2014-04-01
2014-01-1704
An advanced Variable Valve Actuation (VVA) system is optimized for response time in order to provide robust switching at high engine speeds. The VVA system considered is Cylinder Deactivation (CDA) for the purpose of improving fuel economy. Specifically, a Switching Roller Finger Follower (SRFF) on a Dual Overhead Camshaft (DOHC) engine is optimized for cylinder deactivation. The objective of this work is to (1) improve the latch response time when the system response is the slowest, and (2) balance the “ON” and “OFF” response time. A proper tradeoff was established to provide the minimum switching time such that deactivation and reactivation occurs seamlessly and in the right sequence. The response time optimization is accomplished while maintaining the existing packaging space of the overhead. A camshaft with a single lobe per SRFF device on a type II valvetrain was used as the baseline configuration for this study.
Journal Article

Multiscale Modeling Approach for Short Fiber Reinforced Plastic Couplings

2017-01-10
2017-26-0243
The demand for injection molded reinforced plastic products used in the automotive industry is growing due to the capability of the material for volume production, high strength to weight ratio, and its flexibility of geometry design. On the other hand, the application of fiber filled plastic composites has been challenging and subject of research during past decades due to the inability to accurately predict the mechanical strength and stiffness behavior owing to its anisotropic characteristics. This paper discusses a numerical simulation based technique using multiscale (2 scale Micro-Macro) modeling approach for short fiber reinforced plastic composites. Fiber orientation tensors and knit lines are predicted in microscale analysis using Autodesk Inc.’s Moldflow® software, and structural analysis is performed considering the homogenized structure in macroscale analysis using ANSYS® software tool.
X