Refine Your Search

Topic

Author

Search Results

Video

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-12-05
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. Presenter Chinmaya Patil, Eaton Corporation
Journal Article

Performance of a Fuel Reformer, LNT and SCR Aftertreatment System Following 500 LNT Desulfation Events

2009-10-06
2009-01-2835
An advanced exhaust aftertreatment system is characterized following end-of-life catalyst aging to meet final Tier 4 off-highway emission requirements. This system consists of a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst. The fuel reformer is used to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia (NH3) is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses system durability as the catalysts were aged to 500 desulfation events using an off-highway diesel engine.
Journal Article

Aftertreatment System Performance of a Fuel Reformer, LNT and SCR System Meeting EPA 2010 Emissions Standards on a Heavy-Duty Vehicle

2010-10-05
2010-01-1942
Diesel exhaust aftertreatment systems are required for meeting both EPA 2010 and final Tier 4 emission regulations. This paper addresses aftertreatment system performance of a fuel reformer, lean NOx trap (LNT) and selective catalytic reduction (SCR) system designed to meet the EPA 2010 emission standards for an on-highway heavy-duty vehicle. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel reformer, LNT, diesel particulate filter (DPF), and SCR for meeting NOx and particulate emissions. System performance was characterized in an engine dynamometer test cell, using a development, 13L, heavy-duty engine. The catalyst performance was evaluated using degreened catalysts. Test results show that system performance met the EPA 2010 emission standards under a range of test conditions that were reflective of actual vehicle operation.
Technical Paper

EV System Modelling and Co-Simulation with Integrated HVAC and Auxiliary Models

2021-09-22
2021-26-0172
The current simulation models of EV and ICE Vehicles are well known in industry for their use in estimating the fuel economy or Range benefits because of controller calibrations and component sizing. However, there is a gap in understanding the behavior of accessories such as HVAC, power steering and other such auxiliary loads and the energy losses associated with them. Impact of thermal behavior of electronics on vehicle range also needs to be studied in detail. These kinds of studies help OEM and tier 1 manufactures in improving their design concepts significantly with minimum cost and development time. Hence, the focus of this study is on building simulation models of thermal, electrical, traction and control circuits of a typical electric vehicle. These models are then integrated, and analysis is performed to understand vehicle system level performance metrics.
Journal Article

Valve Guide for High Temperature Applications

2008-04-14
2008-01-1110
Sintered valve guides are increasingly used in various engine applications due to their superior durability and cost. Typical valve guide materials are low alloyed materials of the type Fe-Cu-C. More severe applications may require higher alloying content. One such application is EGR where the exhaust temperatures are much higher as compared to the conventional automotive valve guide. A new material was developed to work in this harsh environment. The object of this paper is to report development of this material including material properties and durability test results.
Journal Article

Transient On-Road Emission Reduction of an LNT + SCR Aftertreatment System

2008-10-07
2008-01-2641
An LNT + SCR diesel aftertreatment system was developed in order to meet the 2010 US HD EPA on-road, and tier 4 US HD EPA off-road emission standards. This system consists of a fuel reformer (REF), lean NOx trap (LNT), catalyzed diesel particulate filter (DPF), and selective catalytic reduction (SCR) catalyst arranged in series to reduce tailpipe nitrogen oxides (NOx) and particulate matter (PM). This system utilizes a REF to produce hydrogen (H2), carbon monoxide (CO) and heat to regenerate the LNT, desulfate the LNT, and actively regenerate the DPF. The NOx stored on the LNT is reduced by the H2 and CO generated in the REF converting it to nitrogen (N2) and ammonia (NH3). NH3, which is normally an undesired byproduct of LNT regeneration, is stored in the downstream SCR which is utilized to further reduce NOx that passes through the LNT. Engine exhaust PM is filtered and trapped by the DPF reducing the tailpipe PM emissions.
Journal Article

NOx Performance of an LNT+SCR System Designed to Meet EPA 2010 Emissions: Results of Engine Dynamometer Emission Tests

2008-10-07
2008-01-2642
The paper covers the NOx performance evaluation of an LNT + SCR system designed to meet the 2010 on-highway heavy-duty (HD) US EPA emission standards. The system combines a fuel reformer catalyst (REF), lean NOx trap (LNT), diesel particulate filter (DPF), and selective catalytic reduction (SCR) in series, to reduce engine-out NOx and PM. System NOx reduction performance was verified in an engine dynamometer test cell, using a 2007 7.6L medium-duty engine. System NOx performance was characterized using fresh LNT and SCR along with hydrothermal aged LNT and fresh SCR. Test results show levels consistent with EPA 2010 limits under various test conditions. Catalysts performance was characterized at eight steady engine-operating conditions (A100, B50, B75, A75, B100, C100, C75, C50, across a 13-mode Supplemental Emission Test (SET), and an on-highway Heavy Duty Federal Test Procedure (HD-FTP).
Technical Paper

Gear Design for Low Whine Noise in a Supercharger Application

2007-05-15
2007-01-2293
Supercharger gear whine noise has been a NVH concern for many years, especially around idle rpm. The engine masking noise is very low at idle and the supercharger is sensitive to transmitted gear whine noise from the timing gears. The low loads and desire to use spur gears for ease in timing the rotors have caused the need to make very accurate profiles for minimizing gear whine noise. Over the past several years there has been an effort to better understand gear whine noise source and transmission path. Based on understanding the shaft bending mode frequencies and better gear design optimization tools, the gear design was modified to increase the number of teeth in order to move out of the frequency range of the shaft bending modes at idle speed and to lower the transmission error of the gear design through optimization using the RMC (Run Many Cases) software from the OSU gear laboratory.
Technical Paper

Numerical Improvement of ADVISOR for Evaluating Commercial Vehicles with Traditional Powertrain Systems

2007-10-30
2007-01-4208
ADVISOR is a flexible drivetrain analysis tool, developed in MATLAB/Simulink® to compare fuel economy and emissions performance between different drivetrain configurations. This paper reports a couple of numerical issues with application of ADVISOR 2002 to commercial vehicles with traditional powertrain systems. One instance is when ADVISOR model is set up to simulate running a heavy-duty (HD) truck with an automated manual transmission (AMT) on a demanding pickup-delivery duty cycle. The other is highlighted during an analysis of a medium-duty (MD) truck with an automatic transmission (AT) where wide-open throttle, i.e., fast acceleration is requested. These two cases have shown different numerical difficulties by using ADVISOR 2002. Based on studying the details of the models, solutions to these numerical issues are developed. The simulation results will demonstrate the effectiveness of these solutions.
Technical Paper

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-06-23
2008-01-1541
An advanced exhaust aftertreatment system is being developed using a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalyst arranged in series for both on- and off- highway diesel engines to meet the upcoming emissions regulations. This system utilizes a fuel reformer to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses LNT and SCR catalyst degradation as these were subjected to 150 desulfation events using a pre-production 2007 medium heavy-duty, on-highway diesel engine.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-06-15
2009-01-1772
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-10-06
2009-01-2834
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

On-board Measurements of City Buses with Hybrid Electric Powertrain, Conventional Diesel and LPG Engines

2009-11-02
2009-01-2719
On-board measurements of fuel consumption and vehicle exhaust emissions of NOx, HC, CO, CO2, and PM are being conducted for three types of commercially available city buses in Guangzhou, China. The selected vehicles for this test include a diesel bus with Eaton hybrid electric powertrain, a conventional diesel bus with automated mechanical transmission (AMT), and a LPG powered city bus with manual transmission (MT). All of the tested vehicles were instrumented with on-board measurements. Horiba OBS-2200 was used for measuring NOx, HC, and CO emissions; ELPI (Electrical Low Pressure Impactor) was used for PM measurement. The vehicles were tested at Hainan National Proving Ground in southern China. Test data of fuel consumption and exhaust emissions were analyzed. The city bus with Eaton hybrid electric powertrain demonstrated more than 27% fuel consumption reduction over the conventional diesel powered bus, and over 68% over the LPG bus.
Technical Paper

Hardware-In-the-Loop (HIL) Modeling and Simulation for Diesel Aftertreatment Controls Devlopment

2009-10-06
2009-01-2928
This paper addresses Hardware-In-the-Loop modeling and simulation for Diesel aftertreatment controls system development. Lean NOx Trap (LNT) based aftertreatment system is an efficient way to reduce NOx emission from diesel engines. From control system perspective, the main challenge in aftertreatment system is to predict temperature at various locations and estimate the stored NOx in LNT. Accurate estimation of temperatures and NOx stored in the LNT will result in an efficient system control with less fuel penalty while still maintaining the emission requirements. The optimization of the controls will prolong the lifespan of the system by avoiding overheating the catalysts, and slow the progressive process of component aging. Under real world conditions, it is quite difficult and costly to test the performance of a such complex controller by using only vehicle tests and engine cells.
Technical Paper

Preliminary Numerical Analysis of Valve Fatigue in a Checkball Pump for Driveline Applications

2010-10-05
2010-01-2008
Recent studies have shown that hydraulic hybrid drivelines can significantly improve fuel savings for medium weight vehicles on stop-start drive cycles. In a series hydraulic hybrid (SHH) architecture, the conventional mechanical driveline is replaced with a hydraulic driveline that decouples vehicle speed from engine speed. In an effort to increase the design space, this paper explores the use of a fixed displacement checkball piston pump in an SHH driveline. This paper identifies the potential life-limiting components of a fixed displacement checkball piston pump and examines the likelihood of surface fatigue in the check valves themselves. Numerical analysis in ABAQUS software suggests that under worst case operating conditions, cyclic pressure loading will result in low-cycle plastic deformation of check valve surfaces.
Technical Paper

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

2003-11-10
2003-01-3369
The power management control system development and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model-based approach, and is based on the dynamic programming technique. A vehicle model is first developed, and the optimal control actions to maximize fuel economy are then obtained by the dynamic programming method. A near-optimal control strategy is subsequently extracted and implemented using a rapid-prototyping control development system, which provides a convenient environment to adjust the control algorithms and accommodate various I/O configurations. Dynamometer-testing results confirm that the proposed algorithm helps the prototype hybrid truck to achieve a 45% fuel economy improvement on the benchmark (non-hybrid) vehicle. It also compares favorably to a conventional rule-based control method, which only achieves a 31% fuel economy improvement on the same hybrid vehicle.
Technical Paper

A New Composite Drive Cycle for Heavy-Duty Hybrid Electric Class 4-6 Vehicles

2004-03-08
2004-01-1052
This paper presents a new composite drive cycle used to evaluate and test the performance of Class 4-6 heavy-duty hybrid electric vehicles (HEVs). The new cycle is being used in the ongoing Advanced Heavy Hybrid Propulsion Systems (AHHPS) Program, sponsored by the U.S. Department of Energy. The goal was to select a cycle that is acceptable to all involved parties, has an achievable speed-time trace for target applications, represents the typical driving pattern of these applications, and is practical for testing and state-of-charge correction. These criteria were applied to numerous element and composite cycles. Ultimately, a new composite cycle was developed and selected-the Combined International Local and Commuter Cycle (CILCC). Various activities conducted under the AHHPS Program are based on this cycle, including energy auditing, modeling and simulation, system optimization, and vehicle testing.
Technical Paper

Simulation of an Engine Valve Stress/Strain Response During a Closing Event

2003-03-03
2003-01-0727
Using an implicit transient FEA models of an intake engine valve, the dynamic stress/strain response of a valve closing (impact) on the valve seat was simulated. Key dynamic events during the closing process were identified and their corresponding physics accounted for in the model including: valve seat contact, valve tilt, rocker arm separation, material properties, shock wave and stem seal damping. Empirical tests were conducted to characterize the stem seal damping as a function of valve stem velocity. In addition, a simplified dynamics equation approach was developed. The results were successfully correlated to recorded strain gauge data.
Technical Paper

Vehicle Dynamometer for Hybrid Truck Development

2002-11-18
2002-01-3129
A special vehicle dynamometer has been developed that allows engineers to evaluate driveline components and control algorithms for advanced, electrically-assisted drive systems on commercial vehicles. This dynamometer allows objective measurements of performance, fuel economy, and exhaust emissions, while the full vehicle is operated over a specified driving cycle. This system can be used to exercise the electric motor, engine, transmission and battery systems on Medium Duty Hybrid Trucks - in regeneration as well as power mode - all indoors and in a controlled, repeatable environment. This paper will provide descriptions of the operating goals, control features, and results of testing with this dynamometer. Once the various parameters have been optimized for fuel and emissions performance in this facility, the vehicle can be evaluated where it counts - on the road.
Technical Paper

Fatigue Analysis Methodology for Predicting Engine Valve Life

2003-03-03
2003-01-0726
Using FEM (Finite Element Method) and other analytical approaches, a systematic methodology was developed to predict an engine valve's fatigue life. In this study, a steel (SAE 21-2N) exhaust valve on an engine with a type 2 valve train configuration was used as a test case. Temperature and stress/strain responses of each major event phase of the engine cycle were analytically simulated. CFD models were developed to simulate the exhaust gas flow to generate boundary conditions for a thermal model of the valve. FEM simulations accounted for thermal loads, temperature dependent material properties, thermal stresses, closing impact stresses and combustion load stresses. An estimated fatigue life was calculated using Miner's rule of damage accumulation in conjunction with the Modified Goodman approach for fluctuating stresses. Predicted life results correlated very well with empirical tests.
X