Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

EV System Modelling and Co-Simulation with Integrated HVAC and Auxiliary Models

2021-09-22
2021-26-0172
The current simulation models of EV and ICE Vehicles are well known in industry for their use in estimating the fuel economy or Range benefits because of controller calibrations and component sizing. However, there is a gap in understanding the behavior of accessories such as HVAC, power steering and other such auxiliary loads and the energy losses associated with them. Impact of thermal behavior of electronics on vehicle range also needs to be studied in detail. These kinds of studies help OEM and tier 1 manufactures in improving their design concepts significantly with minimum cost and development time. Hence, the focus of this study is on building simulation models of thermal, electrical, traction and control circuits of a typical electric vehicle. These models are then integrated, and analysis is performed to understand vehicle system level performance metrics.
Journal Article

Valve Guide for High Temperature Applications

2008-04-14
2008-01-1110
Sintered valve guides are increasingly used in various engine applications due to their superior durability and cost. Typical valve guide materials are low alloyed materials of the type Fe-Cu-C. More severe applications may require higher alloying content. One such application is EGR where the exhaust temperatures are much higher as compared to the conventional automotive valve guide. A new material was developed to work in this harsh environment. The object of this paper is to report development of this material including material properties and durability test results.
Technical Paper

Preliminary Numerical Analysis of Valve Fatigue in a Checkball Pump for Driveline Applications

2010-10-05
2010-01-2008
Recent studies have shown that hydraulic hybrid drivelines can significantly improve fuel savings for medium weight vehicles on stop-start drive cycles. In a series hydraulic hybrid (SHH) architecture, the conventional mechanical driveline is replaced with a hydraulic driveline that decouples vehicle speed from engine speed. In an effort to increase the design space, this paper explores the use of a fixed displacement checkball piston pump in an SHH driveline. This paper identifies the potential life-limiting components of a fixed displacement checkball piston pump and examines the likelihood of surface fatigue in the check valves themselves. Numerical analysis in ABAQUS software suggests that under worst case operating conditions, cyclic pressure loading will result in low-cycle plastic deformation of check valve surfaces.
Technical Paper

Simulation of an Engine Valve Stress/Strain Response During a Closing Event

2003-03-03
2003-01-0727
Using an implicit transient FEA models of an intake engine valve, the dynamic stress/strain response of a valve closing (impact) on the valve seat was simulated. Key dynamic events during the closing process were identified and their corresponding physics accounted for in the model including: valve seat contact, valve tilt, rocker arm separation, material properties, shock wave and stem seal damping. Empirical tests were conducted to characterize the stem seal damping as a function of valve stem velocity. In addition, a simplified dynamics equation approach was developed. The results were successfully correlated to recorded strain gauge data.
Technical Paper

Fatigue Analysis Methodology for Predicting Engine Valve Life

2003-03-03
2003-01-0726
Using FEM (Finite Element Method) and other analytical approaches, a systematic methodology was developed to predict an engine valve's fatigue life. In this study, a steel (SAE 21-2N) exhaust valve on an engine with a type 2 valve train configuration was used as a test case. Temperature and stress/strain responses of each major event phase of the engine cycle were analytically simulated. CFD models were developed to simulate the exhaust gas flow to generate boundary conditions for a thermal model of the valve. FEM simulations accounted for thermal loads, temperature dependent material properties, thermal stresses, closing impact stresses and combustion load stresses. An estimated fatigue life was calculated using Miner's rule of damage accumulation in conjunction with the Modified Goodman approach for fluctuating stresses. Predicted life results correlated very well with empirical tests.
Technical Paper

Plant Identification and Design of Optimal Clutch Engagement Controller

2006-10-31
2006-01-3539
Automated clutches for vehicle startup is being increasingly deployed in commercial trucks for benefits, which include driver comfort, gradient performance, improved clutch life, emissions and driveline vibration reduction potential. The process of designing the controller is divided into 2 parts. Firstly, the parameter estimation of previously developed driveline models is carried out. The procedure involves an off-line minimization technique based on measured and estimated speeds. Secondly, the nominal plant model is used to develop LQR based optimal control strategy, which takes into account the slip time, dissipated power and slip acceleration. Mathematical expression of the performance index is clearly developed. A variety of clutch lock up profiles can be incorporated by changing a single tuning parameter, thus providing the driver the ability to select a launch profile based on specific driving objectives.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Modeling and Sensorless Estimation for Single Spring Solenoids

2006-04-03
2006-01-1678
This paper presents an empirical dynamic model of a single spring electromagnetic solenoid actuator system, including bounce, temperature effects and coil leakage inductance. The model neglects hysteresis and saturation, the aim being to compensate for these uncertainties through estimator robustness. The model is validated for all regions of operation and there is a good agreement between model and experimental data. A nonlinear (sliding mode) estimator is developed to estimate position and speed from current measurements. Since the estimator makes use of only current measurement it is given the name sensorless. The estimator is validated in simulation and experimentally. The novelty in this paper lies in the fact that accurate state estimation can be realized on a simple linear model using a robust observer theory. Also, the formulations for leakage inductance and coil temperature are unique.
Technical Paper

Dynamic Modeling of Torque-Biasing Devices for Vehicle Yaw Control

2006-02-14
2006-01-1963
This paper focuses on modeling of torque-biasing devices of a four-wheel-drive system used for improving vehicle stability and handling performance. The proposed driveline system is based on nominal front-wheel-drive operation with on-demand transfer of torque to the rear. The torque biasing components of the system are an electronically controlled center coupler and a rear electronically controlled limited slip differential. Kinematic modeling of the torque biasing devices is introduced including stage transitions during the locking stage and the unlocking/slipping stage. Analytical proofs of how torque biasing could be used to influence vehicle yaw dynamics are also included in the paper. A yaw control methodology utilizing the biasing devices is proposed. Finally, co-simulation results with Matlab®/Simulink® and CarSim® show the effectiveness of the torque biasing system in achieving yaw stability control.
Technical Paper

Stability-Enhanced Traction and Yaw Control using Electronic Limited Slip Differential

2006-04-03
2006-01-1016
Typical traction control systems based on brake intervention have the disadvantage of dissipating an amount of energy roughly equal to that spent in biasing the high-friction wheel. Fully locked differentials achieve the best possible longitudinal traction but, in situations such as slippery or split-friction (split-μ) surfaces, the lateral dynamics of the vehicle can be degraded and deviate from the driver's intended direction. This paper presents an active stability control strategy using electronic limited slip differentials to enhance the vehicle lateral dynamics while preserving longitudinal motion. The proposed control system includes stability enhancement of the traction control and yaw stability control. The stability-enhanced traction control is evaluated under the condition of straight-line full-throttle launching on a split-μ ice/snow surface. The experimental data show a significant stability improvement in a traction mode.
Technical Paper

Fatigue Life Assessment on an Automotive Engine Exhaust Valve

2006-04-03
2006-01-0977
This paper presents the fatigue life assessment work on an engine exhaust valve subject to specified durability test cycles. Using valve stress (or strain) data from finite element methods, material fatigue data, and fatigue prediction models (i.e. SN approach and εN approach based on multi-axial Brown-Miller critical plane method), the valve life estimates were obtained and compared with the observed test data, which were in reasonable agreement. In addition, crack growth approach was used and valve crack propagation life including early stage growth was computed. Finally, a general discussion on three life estimates (i.e. fatigue total life, strain-life and crack growth life) was provided with their governing equation, supported by three real cases.
Technical Paper

Nonlinear Modeling of an Electromagnetic Valve Actuator

2006-04-03
2006-01-0043
This paper presents the modeling of an Electromagnetic Valve Actuator (EMV). A nonlinear model is formulated and presented that takes into account secondary nonlinearities like hysteresis, saturation, bounce and mutual inductance. The uniqueness of the model is contained in the method used in modeling hysteresis, saturation and mutual inductance. Theoretical and experimental methods for identifying parameters of the model are presented. The nonlinear model is experimentally validated. Simulation and experimental results are presented for an EMV designed and built in our laboratory. The experimental results show that sensorless estimation could be a possible solution for position control.
Technical Paper

Development and Validation of Diamond-Like Carbon Coating for a Switching Roller Finger Follower

2012-09-24
2012-01-1964
An advanced variable valve actuation system is developed that requires a coating with high stress loading capability on the sliding interfaces to enable compact packaging solutions for gasoline passenger car applications. The valvetrain system consists of a switching roller bearing finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve. The SRFF contains two slider pads and a single roller to provide discrete variable valve lift capability on the intake valves. These components are installed on a four cylinder gasoline engine. The motivation for designing this type of variable valve actuation system is targeted to improve fuel economy by reducing the air pumping losses during partial load engine operation. This paper addresses the technology developed to utilize a Diamond-like carbon (DLC) coating on the slider pads of the SRFF.
Technical Paper

Stress Analysis of an Automotive Engine Valve by Finite Element Methods

2006-04-03
2006-01-0017
A detailed study, by finite element method (FEM), was conducted on an automotive engine exhaust valve subject to various loads (i.e. spring load, combustion pressure load, temperature profile and valve impact closing velocity). The 3D nonlinear (contact element and temperature-dependent) thermal-mechanical model was constructed and implicit time integration method was employed in transient dynamics under impact velocity. The predicted temperatures and maximum valve stress under impact velocity via FEM were compared with the measured test data, which were in good agreement. In addition, this study finds that the energy transfer during valve closing in normal engine operation is mainly conservative, and a linear relation exists between valve closing velocity and maximum stem stress, that was also confirmed by both test data and analytical expression presented using elastic wave and vibration theory.
Technical Paper

Microprocessor Based Electrohydraulic Control For Car Haulers

1988-09-01
881278
Car hauler ramps have historically been hydraulically positioned via banks of manual control valves that provide limited operator visibility and flexibility. On some enclosed type haulers, manual valves are not feasible. An electro-hydraulic system has been developed utilizing on/off solenoid valve stacks. A handheld control unit with a membrane switch pad communicates with a valve interface module near each valve stack. The handheld unit and the interface modules each have microprocessor circuitry to provide intelligent distributed control. Self monitoring circuitry provides safety features and system diagnostics. Wiring harness assemblies connect the valve stacks to the interface modules. A retractile cable from the handheld unit to the trailer allows improved operator mobility and visibility. An infrared wireless interface between the trailer and handheld unit will also be available.
Technical Paper

Environmental Standards for Biodegradable Hydraulic Fluids and Correlation of Laboratory and Field Performance

2000-09-11
2000-01-2543
Biodegradable hydraulic fluids have been introduced relatively recently and, initially, acceptable environmental performance and technical performance were neither well specified or controlled. Over the past few years, many standards and specifications have been written, especially in the area of biodegradability and ecotoxicity. Technical performance test requirements are emerging more slowly, however, and there is still some doubt over appropriate tests and limits for some performance areas. The proliferation of standards is confusing to both the product developer and fluid user. This paper summarizes the common biodegradability and ecotoxicity elements in the main environmental performance standards. It also discusses appropriate laboratory performance tests for oxidation stability, hydrolytic stability and wear, and sets acceptable limits in these tests, based on correlation of lab and field performance of two synthetic ester based hydraulic fluids.
Technical Paper

Low-Height Differential Concepts for EVs

2018-04-03
2018-01-1294
Compared to the internal-combustion-engine (ICE) vehicles on the road today, Electric Vehicles (EV) deliver more torque to vehicle wheels, and require smaller driveline packaging envelopes. Current differentials use asymmetrical ring gears with differential housings that are roughly a third of the tire outside diameter. New differential architecture concepts are shown here to deliver more torque to the wheels, while decreasing the height of the differential as much as fourfold. Most EV’s are driven by one or more torsion motors, delivering torque to the left side and the right side of the EV’s at different speeds during a vehicle turn, or a wheel “spinout.” At low speeds, the EV motors deliver more torque to the wheels than comparably sized ICE vehicles, so EV differentials must be built stronger and stiffer to manage the distribution of available drive torque.
Technical Paper

Fatigue Time-to-Failure Prediction Methodology for Glass (Fused Quartz) Material under Cyclic Loading

2016-04-05
2016-01-0388
In amorphous solids such as fused quartz, the failure mechanism under cyclic loading is very different when compared to metals where this failure is attributable to dislocation movement and eventual slip band activity. Standard mechanical fatigue prediction methodologies, S-N or ε-N based, which have been historically developed for metals are rendered inapplicable for this class of material. The fatigue strength of Fused Silica or Fused Quartz (SiO2) material is known to be highly dependent on the stressed area and the surface finish. Stable crack growth in Region II of the V-K curve (Crack growth rate vs Stress intensity factor) is dependent on the competing and transitional effects of temperature and humidity, along that specific section of the stress intensity factor abscissa. Fused glass (under harsh environment conditions) finds usage in Automotive, Marine and Aerospace applications, where stress and load (both static and cyclic) can be severe.
Technical Paper

Engine Braking: A Perspective in Terms of Brake Power

2019-01-09
2019-26-0288
Engine braking is a supplemental retarding technology in addition to foundational friction brakes in commercial vehicles. This technology is in use in Europe & Americas for several decades now. In engine braking, the engine acts as a compressor, thus producing the required braking power. The braking power is generated by either reducing the volumetric efficiency or increasing the pressure difference across the cylinder. This is usually achieved by means of exhaust valve lift modulation. There are dominantly two types of engine brakes viz. bleeder brake and compression release brake. The present work uses GT-Power® model to study the braking performance of a 4-cylinder, medium duty diesel engine at different engine RPMs and valve lifts. The work brings out a comprehensive understanding of different lift events and their effects on braking performance.
X