Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Combustion and Emission Characteristics of a Heavy Duty Engine Fueled with Two Ternary Blends of N-Heptane/Iso-Octane and Toluene or Benzaldehyde

2016-04-05
2016-01-0998
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
Technical Paper

Correlating Flame Location and Ignition Delay in Partially Premixed Combustion

2012-09-10
2012-01-1579
Controlling ignition delay is the key to successfully enable partially premixed combustion in diesel engines. This paper presents experimental results of partially premixed combustion in an optically accessible engine, using primary reference fuels in combination with artificial exhaust gas recirculation. By changing the fuel composition and oxygen concentration, the ignition delay is changed. To determine the position of the flame front, high-speed visualization of OH-chemiluminescence is used, enabling a cycle-resolved analysis of OH formation. A clear correlation is observed between ignition delay and flame location. The mixing of fuel and air during the ignition delay period defines the local equivalence ratio, which is estimated based on a spherical combustion volume for each spray. The corresponding emission measurements using fast-response analyzers of CO, HC and NOX confirm the decrease in local equivalence ratio as a function of ignition delay.
Technical Paper

Gasoline-Diesel Dual Fuel: Effect of Injection Timing and Fuel Balance

2011-12-15
2011-01-2437
Recently, some studies have shown high efficiencies using controlled auto-ignition by blending gasoline and diesel to a desired reactivity. This concept has been shown to give high efficiency and, because of the largely premixed charge, low emission levels. The origin of this high efficiency, however, has only partly been explained. Part of it was attributed to a lower temperature combustion, originating in lower heat losses. Another part of the gain was attributed to a faster, more Otto-like (i.e. constant volume) combustion. Since the concept was mainly demonstrated on one single test setup so far, an experimental study has been performed to reproduce these results and gain more insight into their origin. Therefore one cylinder of a heavy duty test engine has been equipped with an intake port gasoline injection system, primarily to investigate the effects of the balance between the two fuels, and the timing of the diesel injection.
X