Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Synthesizing Metrology Technologies to Reduce Engineering Time for Large CNC Machine Compensation

2011-10-18
2011-01-2780
Very large multi-axis CNC machines offer a special challenge for efficient and accurate machine compensation. Aerospace applications demand tight tolerances, but conventional compensation methods become expensive for large machines. Volumetric compensation offers an approach for reducing costs and improving accuracies. A unique control architecture enabled by volumetric compensation enables the use of a single part program by multiple machines. Combining multiple technologies (a proprietary volumetric compensation solver program, Spatial Analyzer, API's Active Target, a laser tracker and bespoke CNC-Tracker communication software for measurement triggering) significantly reduces machine compensation time. Available analysis tools also enable the engineer to evaluate measurement uncertainties and determine the best locations for additional stations as well as quantify the accuracy benefits such stations would offer.
Journal Article

Automated Metrology Solution to Reduce Downtime and De-Skill Tooling Recertification

2012-09-10
2012-01-1869
Wing and fuselage aircraft structures require large precise tools for assembly. These large jigs require periodic re-certification to validate jig accuracy, yet metrology tasks involved may take the tool out of service for a week or more and typically require highly specialized personnel. Increasing the time between re-certifications adds the risk of making out-of-tolerance assemblies. How can we reduce jig re-certification down time without increasing the risk of using out-of-tolerance tooling? An alternative, successfully tested in a prototype tool, is to bring automated metrology tools to bear. Specifically, laser tracker measurements can be automated through a combination of off-the-shelf & custom software, careful line-of-sight planning, and permanent embedded targets. Retro-reflectors are placed at critical points throughout the jig. Inaccessible (out of reach) tool areas are addressed through the use of low cost, permanent, shielded repeatability targets.
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Technical Paper

Implementation of an Uncertainty Analysis Process to SEA Predictions

2007-05-15
2007-01-2312
A process is implemented to propagate uncertainties inherent to the Statistical Energy Analysis (SEA) modeling practice to variance in predictions. A Monte Carlo based approach is scripted for the VA-One environment to account for uncertainties in gross parameters of SEA model subsystems. The variance module of the commercial software is used to estimate possible variations in local modal properties. A first-order expansion solution is applied to integrate uncertainties in the power inputs of the system. The impact of each type of source is assessed in computing overall variance in predictions. The process is applied to analysis of in-flight interior cabin noise predictions using a simplified aft fuselage section SEA model.
Technical Paper

High Path Accuracy, High Process Force Articulated Robot

2013-09-17
2013-01-2291
Spirit AeroSystems' process of producing carbon fiber nacelle panels requires heat and high force plus a high level of dynamic accuracy. Traditionally this would require large and expensive custom machines. A low cost robotic alternative was developed to perform the same operations utilizing an off-the-shelf 6-axis robot mated to a servo-controlled linear axis. Each of the 7 axes is enhanced with secondary position encoders and the entire system is controlled by a Siemens 840Dsl CNC. The CNC handles all process functions, robot motion, and executes software technologies developed for superior dynamic positional accuracy, including enhanced kinematics. The layout of the work cell allowed the robot to span two work zones so that parts can be loaded and unloaded while the robot continues working in the adjacent zone.
X