Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Service Module Thermal Tests of the ESA Herschel and Planck Satellites

2007-07-09
2007-01-3167
European Space Agency (ESA) has planned two important missions for performing astronomical investigations in the infrared and sub-millimetre wavelength range: ♦Herschel satellite has an observatory type mission and is the fourth cornerstone mission (CS4) of the “Horizon 2000” programme. It will carry three instruments (HIFI, SPIRE, and PACS) for high and medium resolution spectroscopy, imaging and photometry over the sub-millimetre and far-infrared range. A 3.5 m telescope will focus the incoming radiation on the Focal Plane Units of these instruments. ♦Planck satellite has a survey type mission and is the third Medium mission (M3) of the “Horizon 2000” programme. It will provide a definitive high-angular resolution map of the cosmic microwave background anisotropies over at least 95% of the sky and over a wide frequency range. A 1.5 m telescope will focus the incoming radiation on the focal plane shared by the two instruments (LFI and HFI).
Technical Paper

Modeling and Correlation of an Actively-Controlled Single Phase Mechanically-Pumped Fluid Loop

2007-07-09
2007-01-3122
This paper describes the transient simulation of a single-phase mechanically pumped fluid loop (MPFL) thermal control system, developed in the frame of the European Space Agency ARTES 8 (Advanced Research in Telecommunication Systems - Large Platform Program) program. MPFL is intended to cool a part of the payload on a high power telecommunication satellite. A transient simulation has been implemented using ESATAN/FHTS; hence the results have been correlated with the test results, obtained from full scale MPFL testing, using real on-orbit profiles. The most considerable parts of the activities described herein are simulation of the thermal control law, verification of control parameters during thermo-hydraulic testing and the subsequent correlation.
Technical Paper

Polar Platform Service Module Thermal Balance Testing and Correlation

1997-07-01
972315
The first use of the Polar Platform (PPF) is for the Envisat/PPF mission. The Envisat/PPF spacecraft has a launch mass of 8.5 tons and external dimensions of 10.0 metres x 2.8 metres x 2.1 metres. Due to it's large size it was necessary to perform the thermal balance and thermal vacuum testing in two modules. The first test was for the Service Module (SM) and the second for the Payload Module (PLM). This paper discusses the thermal balance testing and subsequent correlation of the Polar Platform Service Module thermal mathematical model.
Technical Paper

Thermal Stability Analysis in the Frequency Domain using the ESATAN Thermal Suite

2008-06-29
2008-01-2078
An increasing number of spacecraft missions have very stringent requirements for thermal stability to avoid thermally driven noise from affecting the main observables. For example, it may be necessary to reduce temperature fluctuations in the neighbourhood of the instrument below micro-Kelvin (μK). Consequently, the influence of fluctuations in boundary temperature or internal power dissipation on temperature at the instrument detector must be precisely evaluated. Thermal stability requirements are usually expressed as an upper limit on the linear spectrum density (LSD) of temperature fluctuations. This indicates the strength of the response to a perturbation of a given frequency, and is usually stated in units of K/√Hz. The LSD can be estimated by running a succession of transient simulations and applying Fast Fourier Transforms techniques, but this method is time-consuming and has numerical limitations.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Technical Paper

Development of Columbus Orbital Facility Thermal Mathematical Models for Integrated International Space Station Thermal Analyses

1996-07-01
961540
The Columbus Orbital Facility is being developed as the European laboratory contribution to the United States' led International Space Station programme. The need to exchange thermal mathematical models frequently amongst the Space Station partners for thermal analyses in support of their individual programme milestone, integration and verification activities requires the development of a commonly agreed and effective approach to identify and validate mathematical models and environments. The approach needs to take into account the fact that the partners have different model and software tool requirements and the fact that the models need to be properly tailored to include all the relevant design features. It must also decouple both programmes from the unavoidable design changes they are still undergoing. This problem presents itself for both active and passive thermal interfaces.
Technical Paper

Columbus Active Thermal Control Equipment Development

2005-07-11
2005-01-2769
The Columbus laboratory module for the International Space Station (ISS) uses active thermal control for cooling of avionics and payload in the pressurized compartment. The Active Thermal Control Subsystem (ATCS) is based on a water loop rejecting waste heat to the Medium Temperature Heat Exchanger and Low Temperature Heat Exchanger on Node 2, part of the US Segment of the ISS. Flow and temperature control in the ATCS is achieved by means of the Water Pump Assembly (WPA) and the 3-Way Modulating Valve (WTMO) units. For the flow control the WPA speed is commanded so that a fixed pressure drop is maintained over the plenum with the avionics and payload branches. Adjusting the WTMO internal flow split permit the two active units to perform the CHX and plenum inlet temperature control. The WPA includes a filter and an accumulator to control the pressure in the ATCS and to compensate for leakage and temperature-dependent volume variations.
Technical Paper

Thin-film Smart Radiator Tiles With Dynamically Tuneable Thermal Emittance

2005-07-11
2005-01-2906
This paper describes recent advances in MPB's approach to spacecraft thermal control based on a passive thin-film smart radiator tile (SRT) that employs a variable heat-transfer/emitter structure. This can be applied to Al thermal radiators as a direct replacement for the existing OSR (optical second-reflector) radiator tiles with a net added mass under 100 gm/m2. The SRT employs a smart, integrated thin-film structure based on the nano-engineering of V1-x-yMxNyOn that facilitates thermal control by dynamically modifying the net infrared emittance passively in response to the temperature of the space structure. Dopants, M and N, are employed to tailor the transition temperature characteristics of the tuneable IR emittance. This facilitates thermal emissivities below 0.3 to dark space at lower temperatures that enhance the self-heating of the spacecraft to reduce heater requirements.
Technical Paper

ATV Thermal Control System

2004-07-19
2004-01-2469
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
Technical Paper

HUYGENS Probe: Thermal Design, Test, Flight Comparison, and Descent Prediction

1998-07-13
981644
A study of the first in-orbit temperatures of Huygens shows that the probe will very likely survive thermally all vacuum cruise and coast phases. Calculated heat fluxes, mass flows of Titan's atmosphere into and out of the probe and temperatures give confidence also for the mission phase proper in 2004 i.e. the 2.5 h descent into Titan's -2OO°C atmosphere. Basotect foam bags insulate the probe from this atmosphere. These bags and their fixation had drastically to be modified between Titan test on STPM (May 95) and on FM (June 96). The mission phases, thermal requirements, thermal design, tests with the probe, special tests for the foam bag development and their modification are presented.
X