Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

ARES - ESA's Regenerative Air Revitalisation Experiment on the International Space Station

2008-06-29
2008-01-2093
ESA has been developing regenerative physicochemical air revitalisation technology for more than 20 years. The effort is now maturing into a flight demonstration experiment which is planned to be located in the Columbus module on ISS. The experiment shall be sized for a crew of three. It will comprise a CO2 concentration assembly, a Sabatier reactor and an electrolyser. The paper describes the adaptation of ARES to the available Columbus interfaces as well as ARES development status, performances, benefits to the ISS and operational agreements with ISS partners.
Technical Paper

Design Validation - via Parabolic Flight Tests - of a Condensate Buffer Equalizing a Discontinuous Gas / Water Flow between a Condensing Heat Exchanger and a Water Separator

2006-07-17
2006-01-2087
EADS SPACE Transportation GmbH designed, built and tested a condensate buffer to be located between a Condensing Heat Exchanger (CHX) and a Condensate Water Separator Assembly (CWSA), as part of the ECLSS of the European Columbus Module. Under zero-g conditions, the separation of water from an air-water mixture is always difficult, especially if a passive device is to be used such as the low power consuming Columbus CWSA. The additional buffer volume reduces condensate water peaks reaching the CWSA to a level that excludes an overloading of the CWSA and a release of free water droplets into the air return to the cabin. In the CHX/CWSA system this may only be necessary under worst case operational conditions and with a failure of the qualified hydrophilic coating of the CHX. The buffer design principle was confirmed via prior analyses and on-ground testing. The performance of such a condensate buffer under micro-g conditions was verified during parabolic flights.
Technical Paper

Columbus Active Thermal Control Equipment Development

2005-07-11
2005-01-2769
The Columbus laboratory module for the International Space Station (ISS) uses active thermal control for cooling of avionics and payload in the pressurized compartment. The Active Thermal Control Subsystem (ATCS) is based on a water loop rejecting waste heat to the Medium Temperature Heat Exchanger and Low Temperature Heat Exchanger on Node 2, part of the US Segment of the ISS. Flow and temperature control in the ATCS is achieved by means of the Water Pump Assembly (WPA) and the 3-Way Modulating Valve (WTMO) units. For the flow control the WPA speed is commanded so that a fixed pressure drop is maintained over the plenum with the avionics and payload branches. Adjusting the WTMO internal flow split permit the two active units to perform the CHX and plenum inlet temperature control. The WPA includes a filter and an accumulator to control the pressure in the ATCS and to compensate for leakage and temperature-dependent volume variations.
X