Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Head and Neck Loading Conditions over a Decade of IIHS Rear Impact Seat Testing

2019-04-02
2019-01-1227
Rear-end impacts are the most common crash scenario in the United States. Although automated vehicle (AV) technologies, such as frontal crash warning (FCW) and automatic emergency braking (AEB), are mitigating and preventing rear-end impacts, the technology is only gradually being introduced and currently has only limited effectiveness. Accordingly, there is a need to evaluate the current state of passive safety technologies, including the performance of seatbacks and head restraints. The objective of this study was to examine trends in head and neck loading during rear impact testing in new vehicle models over the prior decade. Data from 601 simulated rear impact sled tests (model years 2004 to 2018) conducted as a part of the Insurance Institute for Highway Safety (IIHS) Vehicle Seat/Head Restraint Evaluation Protocol were obtained.
Technical Paper

An Evaluation of Near- and Far-Side Occupant Responses to Low- to Moderate-Speed Side Impacts

2020-04-14
2020-01-1218
Many side-impact collisions occur at speeds much lower than tests conducted by the National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS). In fact, nearly half of all occupants in side-impact collisions experience a change in velocity (delta-V) below 15 kph (9.3 mph). However, studies of occupant loading in collisions of low- to moderate-severity, representative of many real-world collisions, is limited. While prior research has measured occupant responses using both human volunteers and anthropometric test devices (ATDs), these tests have been conducted at relatively low speeds (<10 kph [<6.2 mph] delta-V). This study evaluated near- and far-side occupant response and loading during two side impacts with delta-V of 6.1 kph and 14.0 kph (3.8 mph and 8.7 mph).
Journal Article

Crash Test Methodology for Electric Scooters with Anthropomorphic Test Device (ATD) Riders

2022-03-29
2022-01-0853
As micromobility devices (i.e., e-bikes, scooters, skateboards, etc.) continue to increase in popularity, there is a growing need to test these devices for varying purposes such as performance assessment, crash reconstruction, and design of new products. Although tests have been conducted across the industry for electric scooters (e-scooters), this paper describes a novel method for crash testing e-scooters with anthropomorphic test devices (ATDs) “riding” them, providing new sources for data collection and research. A sled fixture was designed utilizing a pneumatic crash rail to propel the scooters with an overhead gantry used for stabilization of the ATD until release just prior to impact. The designed test series included impacts with a 5.5-inch curb at varying incidence angles, a stationary vehicle, or a standing pedestrian ATD. Test parameter permutations included changing e-scooter tire sizes, impact speeds, and rider safety equipment.
X