Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Seatback Strength and Its Effect on In-Position and Out-of-Position ATD Loading in High-Speed Rear Impact Sled Tests

2022-03-29
2022-01-0856
Vehicle rear structure stiffness has increased as a result of the requirements in the FMVSS 301R, which has also corresponded to an increase in front-row seat strength. This study evaluates the structural behavior and occupant response associated with production-level seats equipped with body-mounted D-rings, and very stiff all-belt-to-seat (ABTS) in a group of 12 deceleration sled tests. A double-haversine pulse with approximately 100-msec duration was used for all tests, with peak accelerations of approximately 19 g for the 40 km/h (25 mph) tests and peak accelerations of 28 g for the 56 km/h (35 mph) test. This generic pulse was designed to represent a severe rear impact crash involving vehicles with stiffer rear structures. The tests compared occupant responses and resulting structural deformation of an original equipment manufacturer (OEM) production-level driver seat from a pickup and a very stiff modified ABTS. Both seating systems were equipped with dual recliners.
Technical Paper

Evaluation of Occupant Kinematics during Low- to Moderate-Speed Side Impacts

2020-04-14
2020-01-1222
While nearly 50 percent of occupants in side-impact collisions are in vehicles that experience a velocity change (delta-V) below 15.0 kph (9.3 mph), full scale crash testing research at these delta-Vs is limited. Understanding occupant kinematics in response to these types of side impacts can be important to the design of side-impact safety countermeasures, as well as for evaluating potential interactions with interior vehicle structures and/or with other occupants in the vehicle. In the current study, two full-scale crash tests were performed utilizing a late-model, mid-size sedan with disabled airbags. The test vehicle was impacted by a non-deformable moving barrier on the driver side at an impact speed of 10.0 kph (6.2 mph) in the first test and then on the passenger side at an impact speed of 21.6 kph (13.4 mph) in the second test, resulting in vehicle lateral delta-Vs of 6.1 kph (3.8 mph) and 14.0 kph (8.7 mph), respectively.
Technical Paper

Evaluation of Occupant Kinematics in Low- to Moderate-Speed Frontal and Rear-End Motor Vehicle Collisions

2019-04-02
2019-01-1226
Low- to moderate-speed motor vehicle collisions are a common crash type and are sometimes associated with injury complaints. Understanding occupant motion (kinematics) in response to low- and moderate-speed motor vehicle collisions is important for evaluating occupant interactions with interior vehicle structures, including the restraint systems, with the ultimate goal of assessing injury potential. Furthermore, quantitative occupant kinematic data from full-scale crash testing of late-model passenger vehicles is limited for collisions at low- to moderate-speeds. The current study reports kinematic data from full-scale frontal and rear-end crash tests of late-model, mid-size sedans with delta-Vs ranging from 6.0 to 19.0 kph (3.7 to 11.8 mph) and 5.6 to 19.5 kph (3.5 to 12.1 mph), respectively. For each test vehicle, the motion of a Hybrid III 50th-percentile male anthropomorphic test device (ATD) restrained in the driver seat was recorded using high-speed onboard video.
X