Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effect of Obesity on Rollover Ejection and Injury Risks

2020-04-14
2020-01-1219
Obesity rates are increasing among the general population. This study investigates the effect of obesity on ejection and injury risk in rollover crashes through analysis of field accident data contained in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The study involved front outboard occupants of age 15+ years in 1994+ model year vehicle rollover crashes. Occupants were sorted into two BMI groups, normal (18.5 kg/m2 ≤ BMI < 25.0 kg/m2) and obese (BMI ≥30 kg/m2). Complete and partial ejection risks were first assessed by seating location relative to roll direction and belt use. The risk of serious-to-fatal injuries (MAIS 3+F) in non-ejected occupants were then evaluated. The overall risk for complete ejection was 2.10% ± 0.43% when near-sided and 2.65% ± 0.63% when far-sided, with a similar risk for both the normal and obese BMI groups.
Journal Article

Seat Belt Restraint Evidence Generated by Unrestrained Occupant Interaction in a Rollover

2022-03-29
2022-01-0846
Assessment of the physical evidence on a seat belt restraint system provides one source of data for determining an occupant’s seat belt use or non-use during a motor vehicle crash. The evidence typically associated with loading from a restrained occupant has been extensively researched and documented in the literature. However, evidence of loading to the restraint system can also be generated by other means, including the interaction of an unrestrained occupant with a stowed restraint system. The present study evaluates physical evidence on multiple stowed restraint systems generated via interaction with unrestrained occupants during a full-scale dolly rollover crash test of a large multiple passenger van. Unbelted anthropomorphic test devices (ATDs) were positioned in the driver and right front passenger seats and in all designated seating positions in the third, fourth, and fifth rows.
Technical Paper

Seat Belt Latch Plate Design and Pretensioner Deployment Strategies Have Limited Effect on In- and Out-of-Position Occupants in High-Severity Rear-End Collisions

2022-03-29
2022-01-0849
In rear-end collisions, the seatback provides primary occupant restraint during initial rearward motion of the occupant relative to the vehicle interior as the vehicle is accelerated forward by collision forces. When properly used, seat belts contribute to limiting occupant excursion and loading by working in concert with the seatback, as well as managing forward excursion on rebound after rear-end impacts. A lack of data evaluating the role of seat belt restraint component technology in limiting occupant motion and loading during high-severity rear-end impacts has been identified. This knowledge gap is particularly apparent for occupants who are not seated normally, in position, at the time of impact. Previous static pretensioner deployment tests suggest that different combinations of latch plate design and pretensioner deployment strategies might have different effects on occupant restraint.
Technical Paper

An Evaluation of Near- and Far-Side Occupant Responses to Low- to Moderate-Speed Side Impacts

2020-04-14
2020-01-1218
Many side-impact collisions occur at speeds much lower than tests conducted by the National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS). In fact, nearly half of all occupants in side-impact collisions experience a change in velocity (delta-V) below 15 kph (9.3 mph). However, studies of occupant loading in collisions of low- to moderate-severity, representative of many real-world collisions, is limited. While prior research has measured occupant responses using both human volunteers and anthropometric test devices (ATDs), these tests have been conducted at relatively low speeds (<10 kph [<6.2 mph] delta-V). This study evaluated near- and far-side occupant response and loading during two side impacts with delta-V of 6.1 kph and 14.0 kph (3.8 mph and 8.7 mph).
X