Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Validation of Ellipsoid-to-Foam Contact Model

1994-03-01
940881
This report describes an experimental validation of an ellipsoid-to-foam contact model. A series of static foam tests was conducted using Side Impact Dummy rib cage, pelvis, upper leg, and wooden ellipsoids as impactors to validate a theoretical foam contact model previously developed. Predicted results of contact forces, calculated using the uni-axial stress-strain relationship and contact areas, yield good correlation with the test data. These studies used CFC foams and were conducted prior to switching to water-blown foam material development. The ellipsoid-to-foam contact model is being integrated into a MADYMO side impact model. The MADYMO/foam simulation model can then be used to help evaluate design variable tradeoffs (e.g., door thickness vs. body side structures and foam padding requirement vs. interior package) thereby reducing the current dependency on testing, bolster development time, and cost.
Technical Paper

High Strain-Rate Tensile Testing of Door Trim Materials

1997-02-24
971064
The objective of this study was to determine dynamic tensile characteristics of various door trim materials and to recommend a practical test methodology. In this study, Polypropylene (PP) and Acrilonitryl Butadiene Styrene (ABS) door trim materials were tested. Slow speed (quasi-static-0.021 mm/s) and high speed tests were conducted on a closed loop servo-hydraulic MTS system. The maximum stress of these materials increased from quasi-static to dynamic test conditions (as much as 100%). The dynamic stiffness of PP increased two times from quasi-static tests. No significant change in stiffness was observed for ABS during quasi-static and dynamic tests at different strain-rates. Quasi-static and medium strain-rate (10-20 mm/mm/s) tests may be adequate in providing data for characterizing the dynamic behavior of trim materials for CAE applications. Strain gages can be used to measure the quasi-static and in some cases, dynamic strain.
X