Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Measurement and Evaluation of Vacuum Suction Cups Using Digital Image Correlation

2020-04-14
2020-01-0542
As vacuum suction cups are widely used in stamping plants, it becomes urgent and important to understand their performance and failure mode. Vacuum suction cups are employed to lift, move, and place sheet metal instead of human hands. Occasionally the vacuum cups would fail and drop parts, even it would cause expensive delays in the production line. In this research, several types of vacuum cups have been studies and compared experimentally. A new tensile device and test method was developed to measure the pulling force and deformation of vacuum cups. The digital image correlation technique has been adopted to capture and analyze the contour, deformation and strain of the cups under different working conditions. The experimental results revealed that the relevant influential parameters include cup type, pulling force angles, vacuum levels, sheet metal curvatures, etc.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Journal Article

Tribological Performance of ZnO-Oil Nanofluids at Elevated Temperatures

2013-04-08
2013-01-1219
The tribological performance of nanofluids consisting of ZnO nanoparticles dispersed with a stabilizer in an API Group III oil was investigated. Recent research suggests that these fluids may reduce friction and wear compared to the base oil when used as a lubricant in metal-on-metal tests. The effects of nanoparticle concentration and test temperature on friction and wear were studied. Tests were run at 50°C and 100°C to investigate the viability of the fluids at elevated temperatures because possible applications include use as engine lubricants. Nanofluids showed friction reduction of up to 5.2% and reduced wear by up to 82.8% versus oil with only stabilizer at the highest ZnO concentration and the lowest temperature. Stabilizer increased wear at every concentration, but did not affect friction significantly. Fluid viscosity was also investigated. At 30°C, significant shear-thinning behavior was observed for the 2% ZnO solution, and a viscosity versus shear rate curve was found.
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Robust Optimization of Engine Lubrication System

2007-04-16
2007-01-1568
The quality of engine lubrication depends upon how much oil is supplied and how the lubricant is pressurized to the lubricated components. These variables strongly affect the safe operation and lifespan of an engine. During the conceptual design stage of an engine, its lubrication system cannot be verified experimentally. It is highly desirable for design engineers to utilize computer simulations and robust design methodology in order to achieve their goal of optimizing the engine lubrication system. The heuristic design principle is a relatively routine resource for design engineers to pursue although it is time consuming and sacrifices valuable developing time. This paper introduces an unusual design methodology in which design engineers were involved in analyzing their own designs along with lubrication system analyst to establish a link between two sophisticated software packages.
Technical Paper

Effect of Material Microstructure on Scuffing Behavior of Ferrous Alloys

2011-04-12
2011-01-1091
Scuffing is one of the major problems that influence the life cycle and reliability of several auto components, including engine cylinder kits, flywheels, camshafts, crankshafts, and gears. Ferrous casting materials, such as gray cast iron, ductile cast iron and austempered ductile cast iron (ADI) are widely applied in these components due to their self-lubricating characteristics. The purpose of this research is to determine the scuffing behavior of these three types of cast iron materials and compare them with 1050 steel. Rotational ball-on-disc tests were conducted with white mineral oil as the lubricant under variable sliding speeds and loads. The results indicate that the scuffing initiation is due to either crack propagation or plastic deformation. It is found that ADI exhibits the highest scuffing resistance among these materials.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
Technical Paper

Sensitivity Study of Probit and Two-Point Fatigue Testing Methods

2006-04-03
2006-01-0536
Fatigue strength mean and standard deviation may be estimated by the Probit and 2-Point test methods. In this paper, methodologies for conducting the tests are developed and results from Monte Carlo simulation are presented. The results are compared with those from concurrent testing with the staircase method. While the Probit and 2-Point methods are intuitively attractive, their results are significantly different from those from the staircase method. The latter remains the best of the three.
Technical Paper

Tensile Test for Polymer Plastics with Extreme Large Elongation Using Quad-Camera Digital Image Correlation

2016-04-05
2016-01-0418
Polymer plastics are widely used in automotive light weight design. Tensile tests are generally used to obtain material stress-strain curves. Due to the natural of the plastic materials, it could be elongated more than several hundred percent of its original length before breaking. Digital Image Correlation (DIC) Analysis is a precise, full field, optical measurement method. It has been accepted as a practical in-field testing method by the industry. However, with the traditional single-camera or dual-camera DIC system, it is nearly impossible to measure the extreme large strain. This paper introduces a unique experimental procedure for large elongation measurement. By utilization of quad-camera DIC system and data stitch technique, the strain history for plastic material under hundreds percent of elongation can be measured. With a quad-camera DIC system, the correlation was conducted between two adjacent cameras.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Tribological and Metallurgical Properties of Nitrided AISI 4340 Steel

2014-04-01
2014-01-0959
Nitridng usually improves wear resistance and can be accomplished using a gas or plasma method; it's necessary to find if there is any difference in surface roughness, wear and/or wear mechanism when choosing between methods for nitriding. In this study, Ball-on-disk wear test was compared on coupons nitrided with five different nitriding cycles that processed at temperatures of 500-570°C, with a processing time of 8 - 80 hrs. Different compound layer thicknesses were formed, (5-8μm), and a minimum of 0.38 mm case depth was produced. Nitrided samples were also compared to nitrocarburized and the nitrided coupons with a “0” compound layer in a ball-on-disk test. Few selected coupons were post-polished and wear test on ball-on-disk test was compared with the coupons without post polishing. Optical surface roughness using White Light Interferometry (WLIM) and metallurgical testing was performed.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Journal Article

A Methodology for Fatigue Life Estimation of Linear Vibratory Systems under Non-Gaussian Loads

2017-03-28
2017-01-0197
Fatigue life estimation, reliability and durability are important in acquisition, maintenance and operation of vehicle systems. Fatigue life is random because of the stochastic load, the inherent variability of material properties, and the uncertainty in the definition of the S-N curve. The commonly used fatigue life estimation methods calculate the mean (not the distribution) of fatigue life under Gaussian loads using the potentially restrictive narrow-band assumption. In this paper, a general methodology is presented to calculate the statistics of fatigue life for a linear vibratory system under stationary, non-Gaussian loads considering the effects of skewness and kurtosis. The input loads are first characterized using their first four moments (mean, standard deviation, skewness and kurtosis) and a correlation structure equivalent to a given Power Spectral Density (PSD).
Technical Paper

Study of Incremental Bending Test on Aluminum Sheets

2018-04-03
2018-01-0807
Bendability is one of the most important formability characteristics in sheet metal forming, so it has to be understood for robust aluminum stamping process designs. Crack is one of the major failure modes in aluminum sheet bending. In this study, a new “incremental bending” method is proposed to reduce the risk of bending failure. A novel laboratory test methodology is conducted to test the 5xxx series aluminum sheet bendability with 3D digital image correlation (DIC) measurement system. The designs of test apparatus and test procedure are introduced in this paper. Through the data processing and evaluation of a sequence image acquisition, the major strain histories within the zone of the through thickness crack of test samples are measured. Testing results show that incremental bending is capable of reducing peak strain on the outer surface obviously compared with traditional non-incremental bending. The more step, more movement, the more peak strain reduction.
X