Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced Novel Method to Simplify the Detailed Half-Shaft Model and Rapid Model Development

2020-04-14
2020-01-1274
It has been previously shown that a detailed representation of the half-shaft correlates with test data. Developed detailed half-shaft models have shown improvement in capturing the half-shaft path at vehicle idle condition. Since the detailed half-shaft model needs to capture many components and requires detailed solid geometry for each component represented, full CAD model from half-shaft supplier or part scanning is required. Furthermore, despite the availability of CAD geometry, the detailed half-shaft will require solid meshing of the CV joints, the shaft, linearized springs and manual creation of the complex coordinate systems for orientation of contact points. This paper proposes an automated method to reduce the half-shaft model to a semi-elastic rigid body elements model with linearized spring components. The simplified model reduces the modeling time by eliminating solid meshing of components and automating complex coordinate system development without losing accuracy.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
Technical Paper

Development of a Computational Algorithm for Estimation of Lead Acid Battery Life

2020-04-14
2020-01-1391
The performance and durability of the lead acid battery is highly dependent on the internal battery temperature. The changes in internal battery temperatures are caused by several factors including internal heat generation and external heat transfer from the vehicle under-hood environment. Internal heat generation depends on the battery charging strategy and electric loading. External heat transfer effects are caused by customer duty cycle, vehicle under-hood components and under-hood ambient air. During soak conditions, the ambient temperature can have significant effect on battery temperature after a long drive for example. Therefore, the temperature rise in a lead-acid battery must be controlled to improve its performance and durability. In this paper a thermal model for lead-acid battery is developed which integrates both internal and external factors along with customer duty cycle to predict battery temperature at various driving conditions.
Journal Article

Influence of Automatic Engine Stop/Start Systems on Vehicle NVH and Launch Performance

2015-06-15
2015-01-2183
Integration of automatic engine Stop/Start systems in “conventional” drivetrains with 12V starters is a relatively cost-effective measure to reduce fuel consumption. Therefore, automatic engine Stop/Start systems are becoming more prevalent and increasing market share of such systems is predicted. A quick, reliable and consistent engine start behavior is essential for customer acceptance of these systems. The launch of the vehicle should not be compromised by the Stop/Start system, which implies that the engine start time and transmission readiness for transmitting torque should occur within the time the driver releases the brake pedal and de-presses the accelerator pedal. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Hence, the engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Journal Article

Degradation Analysis of Flexible Film Cables in an Automotive Environment

2017-03-28
2017-01-0317
Automobiles have a high degree of mechanical and electrical complexity. However, product complexity has the accompanying effect of requiring high levels of design and process oversight. The net result is a product creation process which is prone to creating failures. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions, failures are inevitable, common, and must be dealt with accordingly. In the worst case, if a failure manifests itself into an observable failure the customer may have a negative experience. Therefore, it is imperative that design engineers, suppliers along with reliability professionals be able to assess the design risk. One approach to assess risk is the use of degradation analysis. Degradation analysis often provides more information than failure time data for assessing reliability and predicting the remnant life of a system.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

An Empirical Aging Model for Lithium-Ion Battery and Validation Using Real-Life Driving Scenarios

2020-04-14
2020-01-0449
Lithium-ion batteries (LIBs) have been widely used as the energy storage system in plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) due to their high power and energy density and long cycle life compared to other chemistries. However, LIBs are sensitive to operating conditions, including temperature, current demand and surface pressure of the cell. One very well understood phenomenon of lithium-ion battery is the reduction in charge capacity over time due to cycling and storage commonly known as capacity fade. Considering the need for predicting the behavior of an aged cell and the need for estimating battery useful life for warranty purpose, it is crucial to predict the capacity fade with reasonable accuracy. To accommodate this need, a novel cell level empirical aging model is built based on storage tests and cycle tests. The storage test captures the calendar aging of the lithium-ion cell while the cycle test estimates the cycle aging of the cell.
Technical Paper

Application of Multivariate Control Chart Techniques to Identifying Nonconforming Pallets in Automotive Assembly Plants

2020-04-14
2020-01-0477
The Hotelling multivariate control chart and the sample generalized variance |S| are used to monitor the mean and dispersion of vehicle build vision data including the pallet information to identify the non-conforming pallets that are used in body shops of FCA US LLC assembly plants. An iterative procedure and the Gaussian mixture model (GMM) are used to rank the non-conforming or bad pallets in the order of severity. The Hotelling multivariate T2 test statistic along with Mason-Tracy-Young (MYT) signal decomposition method is used to identify the features that are affected by the bad pallets. These algorithms were implemented in the Advanced Pallet Analysis module of the FCA US software Body Shop Analysis Toolbox (BSAT). The identified bad pallets are visualized in a scatter plot with a different color for each of the top bad pallets. The run chart of an affected feature confirms the bad pallet by highlighting data points from the bad pallet.
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Technical Paper

EURO-NCAP MPDB Compatibility Impact Model Assessment Using a Virtual Barrier Deformation Tracker

2021-04-06
2021-01-0834
Euro NCAP committee has created the Mobile Progressive Deformable Barrier (MPDB) “Compatibility” test that could change the way we design the vehicle front structure for impact [4]. To assist the crashworthy design development activity for this new mode of impact test, CAE barrier models [2] have been developed and used by vehicle safety CAE engineers. These impact models are designed to generate the barrier deformation data essential for evaluation of the scores of the two rating parameters of “Standard Deviation”, “Bottom-Out” for the MPDB impact event. In test, a physical 3-D scanner measures the barrier deformation depth and draws contour plot necessary for determining above two rating parameters. For model results assessment, a virtual scanner, which can emulate the measurement accuracy of the physical scanner is required.
Technical Paper

HVAC System Bench Test Analysis for TXV Tuning

2018-04-03
2018-01-0070
In today’s automotive industry, the A/C (Air-conditioning) system is emerging into a high level of technological growth to provide quick cooling, warm up and maintaining the air quality of the cabin during all-weather conditions. In HVAC system, TXV plays vital role by separating high side to low side of vapor compression refrigeration system. It also regulates the amount of refrigerant flow to the evaporator based on A/C system load. The HVAC system bench laboratory conducts the test at different system load conditions to evaluate the outputs from tests during initial development stage to select the right TXV in terms of capacity and Superheat set point for a given system. This process is critical in HVAC developmental activity, since mule cars will be equipped with selected TXV for initial assessment of the system performance.
Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

Microprocessor Execution Time and Memory Use for Battery State of Charge Estimation Algorithms

2022-03-29
2022-01-0697
Accurate battery state of charge (SOC) estimation is essential for safe and reliable performance of electric vehicles (EVs). Lithium-ion batteries, commonly used for EV applications, have strong time-varying and non-linear behaviour, making SOC estimation challenging. In this paper, a processor in the loop (PIL) platform is used to assess the execution time and memory use of different SOC estimation algorithms. Four different SOC estimation algorithms are presented and benchmarked, including an extended Kalman filter (EKF), EKF with recursive least squares filter (EKF-RLS) feedforward neural network (FNN), and a recurrent neural network with long short-term memory (LSTM). The algorithms are deployed to two different NXP S32Kx microprocessors and executed in real-time to assess the algorithms' computational load. The algorithms are benchmarked in terms of accuracy, execution time, flash memory, and random access memory (RAM) use.
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Nonlinear, Concave, Constrained Optimization in Six-Dimensional Space for Hybrid-Electric Powertrains

2023-04-11
2023-01-0550
One of the building blocks of the Stellantis hybrid powertrain embedded control software computes the maximum and minimum values of objective functions, such as output torque, as a function of engine torque, hybrid motor torque and other variables. To test such embedded software, an offline reference function was created. The reference function calculates the ideal minimum and maximum values to be compared with the output of the embedded software. This article presents the offline reference function with an emphasis on mathematical novelties. The reference function computes the minimum and maximum points of a linear objective function as a function of six independent variables, subject to 42 linear and two nonlinear constraints. Concave domains, curved surfaces, disjoint domains and multiple local extremum points challenge the algorithm. As a theorem, the conditions and methods for running trigonometric calculations in 6D Euclidean space are presented.
Technical Paper

A Physics Based Thermal Management Model for PHEV Battery Systems

2018-04-03
2018-01-0080
The demand for vehicles with electrified powertrain systems is increasing due to government regulations on fuel economy. The battery systems in a PHEV (Plug-in Hybrid-electric Vehicle) have achieved tremendous efficiency over past few years. The system has become more delicate and complex in architecture which requires sophisticated thermal management. Primary reason behind this is to ensure effective cooling of the cells. Hence the current work has emphasized on developing a “Physics based” thermal management modeling framework for a typical battery system. In this work the thermal energy conservation has been analyzed thoroughly in order to develop necessary governing equations for the system. Since cooling is merely a complex process in HEV battery systems, the underlying mechanics has been investigated using the current model. The framework was kept generic so that it can be applied with various architectures. In this paper the process has been standardized in this context.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Automotive HVAC Dual Unit System Cool-Down Optimization Using a DFSS Approach

2019-04-02
2019-01-0892
Automotive AC systems are typically either single unit or dual unit systems, while the dual unit systems have an additional rear evaporator. The refrigerant evaporates inside these heat exchangers by taking heat and condensing the moisture from the recirculated or fresh air that is being pushed into the car cabin by air blowers. This incoming cold air in turn brings the cabin temperature and humidity to a level that is comfortable for the passengers. These HVAC units have their own thermal expansion valve to set the refrigerant flow, but both are connected to the main AC refrigerant loop. The airflows, however, are controlled independently for front and rear unit that can affect the temperature and amount of air coming into the cabin from each location and consequently the overall cabin cool-down performance.
X