Refine Your Search

Topic

Author

Search Results

Video

Hybrid Vehicle Battery OBD: Why, Wherefore, and How

2012-02-01
Plug In Charging Systems are mainly responsible for transferring energy from the electric power grid into one or more vehicle energy storage devices (e.g. batteries). A satisfactorily operating Plug in Charging System has the following three key performance characteristics. First, the charge process starts up easily. Second, it completes the charge process within some expected time. Third, it charges efficiently so that excessive amounts of power are not wasted. When a Plug In Charging System malfunction exists and negatively affects one or more of these key performance criteria, it is the responsibility of the OBD monitoring system to identify the fault and notify the customer. The presentation will discuss the key performance characteristics described above and some of the diagnostic strategies used to detect faults. The discussion will also include an overview of MIL illumination and freeze frame storage capabilities.
Video

C-Max Energi - Ford's Plug-In Solution

2011-11-07
Evolving the current state of the art Hybrid Technology for vehicles with plug-in capability will yield three significant results, the displacement of petroleum with electricity for transportation, improved efficiency and reduced emissions. As the technology evolves from the Ford Escape Hybrid Plug-In demo fleet, Ford is in the final stages of development of the C-Max Energi, which will be delivered in 2012 as a highly efficient, full purpose vehicle designed to meet customer expectations without compromise. Presenter Charles Gray, Ford Motor Co.
Video

Ford: Driving Hybrid Efficiency

2012-03-23
Hybrid vehicles in the modern era were developed with a strong primary goal to increase fuel efficiency in the North American market. Over the last 15 years, this market has expanded from zero sales to as high as 3% of total US sales. Most recently, the portfolio of competitive offerings with HEV propulsion systems has grown even more to about 30 models on sale today. Some interesting features and attributes have evolved thru this wider array of products giving the customer much more choice of which characteristics to select to match their needs. Ford�s 3rd generation HEV system will be offered for sale this fall. With it, we have continued our focus on the Fuel Efficiency as the driving force for our efforts. The overall process for the system engineering and some of the relevant subsystem and component contributors to the Fuel Efficiency improvement reflected in the 2013 Model Year Fusion and CMAX Hybrids will be presented. Presenter Charles Gray, Ford Motor Co.
Journal Article

Diagnostics Design Process for Developmental Vehicles

2010-04-12
2010-01-0247
In this paper a diagnostic design process is proposed for developmental vehicles where mainstream design process is not well-suited. First a review of current practice in on-board vehicle fault diagnostics design is presented with particular focus on the application of this process to the development of the Ford Escape Hybrid Electric Vehicle (HEV) program and a demonstration Fuel Cell Electric Vehicle (FCEV) program. Based on the review and evaluation of these experiences, a new tool for diagnostics design is proposed that promises to make the design more traceable, to reduce the repetition of work, and to improve understandability and reuse.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

An Empirical Aging Model for Lithium-Ion Battery and Validation Using Real-Life Driving Scenarios

2020-04-14
2020-01-0449
Lithium-ion batteries (LIBs) have been widely used as the energy storage system in plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) due to their high power and energy density and long cycle life compared to other chemistries. However, LIBs are sensitive to operating conditions, including temperature, current demand and surface pressure of the cell. One very well understood phenomenon of lithium-ion battery is the reduction in charge capacity over time due to cycling and storage commonly known as capacity fade. Considering the need for predicting the behavior of an aged cell and the need for estimating battery useful life for warranty purpose, it is crucial to predict the capacity fade with reasonable accuracy. To accommodate this need, a novel cell level empirical aging model is built based on storage tests and cycle tests. The storage test captures the calendar aging of the lithium-ion cell while the cycle test estimates the cycle aging of the cell.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Journal Article

Methodology for Assessment of Alternative Hybrid Electric Vehicle Powertrain System Architectures

2012-04-16
2012-01-1010
Hybrid electric vehicle (HEV) systems offer significant improvements in vehicle fuel economy and reductions in vehicle generated greenhouse gas emissions. The widely accepted power-split HEV system configuration couples together an internal combustion engine with two electric machines (a motor and a generator) through a planetary gear set. This paper describes a methodology for analysis and optimization of alternative HEV power-split configurations defined by alternative connections between power sources and transaxle. The alternative configurations are identified by a matrix of kinematic equations for connected power sources. Based on the universal kinematic matrix, a generic method for automatically formulating dynamic models is developed. Screening and optimization of alternative configurations involves verification of a set of design requirements which reflect: vehicle continuous operation, e.g. grade test; and vehicle dynamic operation such as acceleration and drivability.
Technical Paper

Thermal Modeling of DC/AC Inverter for Electrified Powertrain Systems

2020-04-14
2020-01-1384
A DC-to-AC main Power Inverter Module (PIM) is one of the key components in electrified powertrain systems. Accurate thermal modeling and temperature prediction of a PIM is critical to the design, analysis, and control of a cooling system within an electrified vehicle. PIM heat generation is a function of the electric loading applied to the chips and the limited heat dissipation within what is typically compact packaging of the Insulated Gate Bipolar Transistor (IGBT) module inside the PIM. This work presents a thermal modeling approach for a 3-phase DC/AC PIM that is part of an automotive electrified powertrain system. Heat generation of the IGBT/diode pairs under electric load is modeled by a set of formulae capturing both the static and dynamic losses of the chips in the IGBT module. A thermal model of the IGBT module with a simplified liquid cooling system generates temperature estimates for the PIM.
Technical Paper

Equivalence Factor Calculation for Hybrid Vehicles

2020-04-14
2020-01-1196
Within a hybrid electric vehicle, given a power request initiated by pedal actuation, a portion of overall power may be generated by fuel within an internal combustion engine, and a portion of power may be taken from or stored within a battery via an e-machine. Generally speaking, power taken from a vehicle battery must eventually be recharged at a later time. Recharge energy typically comes ultimately from engine generated power (and hence from fuel), or from recovered braking energy. A hybrid electric vehicle control system attempts to identify when to use each type of power, i.e., battery or engine power, in order to minimize overall fuel consumption. In order to most efficiently utilize battery and fuel generated power, many HEV control strategies utilize a concept wherein battery power is converted to a scaled fueling rate.
Technical Paper

Control of Electric to Parallel Hybrid Drive Transition in a Dual-Drive Hybrid Powertrain

2010-04-12
2010-01-0819
Hybrid electric vehicle (HEV) powertrains have become key to developing environmentally friendly and fuel efficient vehicles. As such, companies are continually investing in developing new hybrid powertrain architectures. Ford Motor Company has developed a new “Dual-Drive” full hybrid electric vehicle that overcomes some attribute deficiencies of existing hybrid powertrain architectures due to the kinematic arrangement of the engine, motors and driveline components. This hybrid powertrain is comprised of conventional powertrain components as its base with an electric motor on the rear axle, and a crank integrated starter generator, engine and transmission on the front axle. It forms a complex configuration which provides fuel economy improvement over a conventional powertrain.
Technical Paper

Design and Analysis of an Adaptive Real-Time Advisory System for Improving Real World Fuel Economy in a Hybrid Electric Vehicle

2010-04-12
2010-01-0835
Environmental awareness and fuel economy legislation has resulted in greater emphasis on developing more fuel efficient vehicles. As such, achieving fuel economy improvements has become a top priority in the automotive field. Companies are constantly investigating and developing new advanced technologies, such as hybrid electric vehicles, plug-in hybrid electric vehicles, improved turbo-charged gasoline direct injection engines, new efficient powershift transmissions, and lighter weight vehicles. In addition, significant research and development is being performed on energy management control systems that can improve fuel economy of vehicles. Another area of research for improving fuel economy and environmental awareness is based on improving the customer's driving behavior and style without significantly impacting the driver's expectations and requirements.
Technical Paper

Advanced Control of Engine RPM for a More Intuitive Driving Experience in Power Split Hybrid Electric Vehicles

2010-10-25
2010-01-2194
The Auto Industry is responding to the environment and energy conservation concerns by ramping up production of hybrid electric vehicles (HEV). As the initial hurdles of making the powertrain operate are overcome, challenges such as making the powertrain feel more refined and intuitive remain. This paper investigates one of the key parameters for delivering that refinement: engine RPM behavior. Ideal RPM behavior is explored and included in the design of a control system. System implications are examined with regard to the effect of engine RPM scheduling on Battery usage and vehicle responsiveness.
Technical Paper

Transient Heat Transfer of 42V Ni-MH Batteries for an HEV Application

2002-06-03
2002-01-1964
While a Ni-MH battery has good performance properties, such as a high power density and no memory effect, it needs a powerful thermal management system to maintain within the required narrow thermal operating range for the 42V HEV applications. Inappropriate battery temperatures result in degradation of the battery performance and life. For the battery cooling system, air is blown into the battery pack. The exhaust is then vented outside due to potential safety issues with battery emissions. This cooling strategy can significantly impact fuel economy and cabin climate control. This is particularly true when the battery is experiencing frequent charge and discharge of high-depths in extreme hot or cold weather conditions. To optimize performance and life of HEV traction batteries, the battery cooling design must keep the battery operation temperature below a maximum value and uniform across the battery cells.
Technical Paper

High-Power Battery Testing Procedures and Analytical Methodologies for HEV's

2002-06-03
2002-01-1950
Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle- and calendar-life modeling for hybrid electric vehicle batteries are presented.
Technical Paper

Ratio-Metric Hesitation Fuel Detection and Compensation in Power Split Hybrid Electric Vehicles

2011-04-12
2011-01-0882
Power Split Hybrids are unique when compared to conventional powertrains from the perspective that the engine speed is directly controlled by the motor/generator at all times. Therefore, traditional methods of detecting variations in fuel volatility do not apply for Power Split Hybrid based configurations. In their place, the Ratio-metric Fuel Compensation (RFC) method has been developed for Power Split Hybrid generator configurations to detect and compensate for engine hesitations within milliseconds of the first injection event. Furthermore, test results have shown that in the presence of low volatility fuel, RFC provides robust starts at the ideal lean air fuel ratio required for PZEV emissions compliance.
Technical Paper

Mode-shifting Minimization in a Power Management Strategy for Rapid Component Sizing of Multimode Power Split Hybrid Vehicles

2018-04-03
2018-01-1018
The production of multi-mode power-split hybrid vehicles has been implemented for some years now and it is expected to continually grow over the next decade. Control strategy still represents one of the most challenging aspects in the design of these vehicles. Finding an effective strategy to obtain the optimal solution with light computational cost is not trivial. In previous publications, a Power-weighted Efficiency Analysis for Rapid Sizing (PEARS) algorithm was found to be a very promising solution. The issue with implementing a PEARS technique is that it generates an unrealistic mode-shifting schedule. In this paper, the problematic points of PEARS algorithm are detected and analyzed, then a solution to minimize mode-shifting events is proposed. The improved PEARS algorithm is integrated in a design methodology that can generate and test several candidate powertrains in a short period of time.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

2013-04-08
2013-01-1456
To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
X