Refine Your Search

Topic

Search Results

Technical Paper

Impact to Cooling Airflow from Truck Platooning

2020-04-14
2020-01-1298
We investigate tradeoffs between the airflow strategies related to engine cooling and the aerodynamic-enabled fuel savings created by platooning. By analyzing air temperatures, engine temperatures and cooling air flow at different platoon distances, we show the thermal impact to the engine from truck platooning. Previously, we collected wind and thermal data for numerous heavy-duty truck platoon configurations (gaps ranging from 4 to 87 meters) and reported the significant fuel savings enabled by these configurations. The fuel consumption for all trucks in the platoon were measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate while travelling at 65 mph and loaded to a gross weight of 65,000 lb.
Journal Article

Potentials for Platooning in U.S. Highway Freight Transport

2017-03-28
2017-01-0086
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption – and related emissions – while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles

2007-04-16
2007-01-0292
Plug-in hybrid electric vehicle (PHEV) technology will provide substantial reduction in petroleum consumption as demonstrated in previous studies. Platform engineering steps including, reduced mass, improved engine efficiency, relaxed performance, improved aerodynamics and rolling resistance can impact both vehicle efficiency and design. Simulations have been completed to quantify the relative impacts of platform engineering on conventional, hybrid, and PHEV powertrain design, cost, and consumption. The application of platform engineering to PHEVs reduced energy storage system requirements by more than 12%, offering potential for more widespread use of PHEV technology in an energy battery supply-limited market. Results also suggest that platform engineering may be a more cost-effective way to reduce petroleum consumption than increasing the energy storage capacity of a PHEV.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

Helmholtz Resonators Acting as Sound Source in Automotive Aeroacoustics

2009-04-20
2009-01-0183
Helmholtz-resonators are discussed in technical acoustics normally in conjunction with attenuation of sound, not with amplification or even production of sound. On the other hand everybody knows the sound produced by a bottle, when someone blows over the orifice. During the investigation of the sound produced in body gaps it was found that the underlying flow physics are closely related to the Helmholtz-resonator. But different from the typical Helmholtz-resonator generated noise – as for example the blown bottle or, from the automotive world, the sun roof buffeting – there is no fluid resonance involved in the process. For body gaps the random pressure fluctuation of the turbulent boundary layer is sufficient to excite the acoustic resonance in the cavity. The sound generation is characterized by a continuous rise in sound pressure level with increasing velocity, the rise is proportional to U with varying exponents.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

Gradient Effects on Drag Due to Boundary-Layer Suction in Automotive Wind Tunnels

2003-03-03
2003-01-0655
A region with floor boundary-layer suction upstream of the vehicle to remove the oncoming boundary layer is often used in automotive wind tunnels. These suction systems inevitably change the empty-tunnel pressure gradient. In this paper, the empty-tunnel pressure gradient created by the use of boundary layer suction and its effect on measured drag are investigated. By using excess suction - more suction than necessary to remove the floor boundary layer – it was possible to show experimentally that the major part of the drag increase due to boundary layer suction is created by unintended gradient effects. Only a minor part of the drag increase is due to the increased flow velocities at the lower parts of the vehicle, or in other words, due to the improved ground simulation. A theoretical model, using the concept of horizontal buoyancy to predict the gradient effect, is proposed. The model is compared to the experimental results as well as to CFD calculations.
Technical Paper

Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

2018-04-03
2018-01-0218
Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25°C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 °C, as well as knock-limited load measurements across a range of IATs up to 90 °C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels’ knock resistance. The DI load sweeps at 50°C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied.
Technical Paper

Analysis of the Unsteady Wakes of Heavy Trucks in Platoon Formation and Their Potential Influence on Energy Savings

2021-04-06
2021-01-0953
The authors present transient wind velocity measurements from two successive, well-documented truck platooning track-test campaigns to assess the wake-shedding behavior experienced by trucks in various platoon formations. Utilizing advanced analytics of data from fast-response (100-200-Hz) multi-hole pressure probes, this analysis examines aerodynamic flow features and their relationship to energy savings during close-following platoon formations. Applying Spectral analysis to the wind velocity signals, we identify the frequency content and vortex-shedding behavior from a forward truck trailer, which dominates the flow field encountered by the downstream trucks. The changes in dominant wake-shedding frequencies correlate with changes to the lead and follower truck fuel savings at short separation distances.
Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
Technical Paper

Cooling Drag of Ground Vehicles and Its Interaction with Ground Simulation

2006-04-03
2006-01-0339
Cooling drag is the increase in the total drag due to the internal flow in the cooling system. Because of the high flow resistance in the heat exchanger the momentum of the fluid needed for engine cooling usually is dissipated nearly completely. The resulting drag penalty can be approximated by the so called ram drag. For ground vehicles the cooling drag is typically lower than this approximation due to positive interference of the cooling flow with the general flow around the vehicle. Different mechanisms for the positive interference have been described in the literature. Inlet interference as well as outlet interference can result in significant reduction of the share of the cooling drag. Positive outlet interference is obtained, when the remaining kinetic energy of the cooling flow contributes significant thrust to the overall momentum balance.
Technical Paper

Induced Drag of Ground Vehicles and Its Interaction with Ground Simulation

2005-04-11
2005-01-0872
For the aerodynamic development of an aircraft the induced drag is an important quantity and it has a significant impact on the design of the wing. The induced drag corresponds to the power requirement of the wing to generate the necessary lift. In many cases this is the dominant source of drag for aircraft. In ground vehicle aerodynamics the concept of induced drag up to now has attracted much less attention. This is partly due to the fact, that vehicle aerodynamicists usually optimize the vehicles to generate little or no lift. The second reason is that it is much more difficult for a ground vehicle to separate the total drag into the different contributions. During wind tunnel tests of vehicles with and without ground simulation some astonishing results were found, especially when comparing results for different rear end shapes.
Technical Paper

Bayesian Parameter Estimation for Heavy-Duty Vehicles

2017-03-28
2017-01-0528
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses a Monte Carlo method to generate parameter sets that are fed to a variant of the road load equation. The modeled road load is then compared to the measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters.
Technical Paper

The Audi Aeroacoustic Wind Tunnel: Final Design and First Operational Experience

2000-03-06
2000-01-0868
Audi's new full scale aeroacoustic wind tunnel is under full operation now. The new facility is designed for full scale automotive testing of aerodynamics and aeroacoustics for vehicles up to 3 m2 frontal area at wind speeds up to 300 kph. The highlights are the unique ground simulation system with boundary layer suction and a 5-belt-system, and the extremely low background noise of only 60 dB(A) at 160 kph. First the background of the project is illustrated and the need for the special features of the tunnel is deduced form the industrial requirements. Then an overview of the facility design is given with a detailed description of the key technical components. The calibration of the self-correcting test section will be discussed and the physical background for it will be examined more closely. For the calibrated wind tunnel the results of two correlation tests including open jet as well as closed wall wind tunnels show a reasonable conformity.
Technical Paper

The Evaluation of the Impact of New Technologies for Different Powertrain Medium-Duty Trucks on Fuel Consumption

2016-09-27
2016-01-8134
In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four powertrains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.
Technical Paper

Exploring Telematics Big Data for Truck Platooning Opportunities

2018-04-03
2018-01-1083
NREL completed a temporal and geospatial analysis of telematics data to estimate the fraction of platoonable miles traveled by class 8 tractor trailers currently in operation. This paper discusses the value and limitations of very large but low time-resolution data sets, and the fuel consumption reduction opportunities from large scale adoption of platooning technology for class 8 highway vehicles in the US based on telematics data. The telematics data set consist of about 57,000 unique vehicles traveling over 210 million miles combined during a two-week period. 75% of the total fuel consumption result from vehicles operating in top gear, suggesting heavy highway utilization. The data is at a one-hour resolution, resulting in a significant fraction of data be uncategorizable, yet significant value can still be extracted from the remaining data. Multiple analysis methods to estimate platoonable miles are discussed.
Technical Paper

Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

2015-09-29
2015-01-2773
The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study analyzed the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors included vehicle weight and the coefficients of rolling resistance and aerodynamic drag. Simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles.
X