Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Open Grille DrivAer Model - First Results

2015-04-14
2015-01-1553
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. When investigating those effects, both experiments and numerical simulations are commonly used in the automotive environment. Still, when comparing the results from both methods, differences in the effect of cooling air flow can often be observed. To better understand the effects of cooling air flow, the ECARA Subgroup CFD decided to establish a common design for a generic open source vehicle model with a detailed underhood compartment to lay the foundation for a common investigation model.
Journal Article

The Effects of Cooling Air on the Flow Field around a Vehicle

2016-04-05
2016-01-1603
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. But cooling air not only affects the internal flow of the vehicle but also changes the flow around it. This paper will show changes in the flow field around the generic DrivAer model resulting from cooling air flow, especially in the wake behind the car and in the region around the front wheels. The results were gathered using PIV measurements, multi-hole-probe measurements and pitot tube measurements in the 1:4 model scale wind tunnel of IVK University of Stuttgart.
Journal Article

Investigation of Aerodynamic Drag in Turbulent Flow Conditions

2016-04-05
2016-01-1605
In this paper the influence of different turbulent flow conditions on the aerodynamic drag of a quarter scale model with notchback and estate back rear ends is investigated. FKFS swing® (Side Wind Generator) is used to generate a turbulent flow field in the test section of the IVK model scale wind tunnel. In order to investigate the increase in drag with increasing yaw, a steady state yaw sweep is performed for both vehicle models. The shape of the drag curves vary for each vehicle model. The notchback model shows a more pronounced drag minimum at 0° yaw angle and experiences a more severe increase in drag at increasing yaw when compared to the estate back model. Unsteady time averaged aerodynamic drag values are obtained at two flow situations with different turbulent length scales, turbulence intensities, and yaw angle amplitudes. While the first one is representing light wind, the second one is recreating the presence of strong gusty wind.
Technical Paper

Experimental and Numerical Study of the DrivAer Model Aerodynamics

2018-04-03
2018-01-0741
The DrivAer model, a detailed generic open source vehicle geometry, was introduced a few years ago and accepted widely from industry and academia for research in the field of automotive aerodynamics. This paper presents the evaluation of the aerodynamic properties of the 25% scale DrivAer model in both, CFD and in wind tunnel experiment. The results not only include aerodynamic drag and lift but also provide detailed investigations of the flow field around the vehicle. In addition to the available geometries of the DrivAer model, individual changes were introduced created by morphing the geometry of the baseline model. A good correlation between CFD and experiment could be achieved by using a CFD setup including the geometry of the wind tunnel test section. The results give insight into the aerodynamics of the DrivAer model and lead to a better understanding of the flow around the vehicle.
Technical Paper

Influence of Open-Jet Effects on Vehicle Wind Tunnel Measurements

2021-02-15
2021-01-5014
The wind tunnel is the standard tool in the development and improvement of vehicle aerodynamics. Usually, automotive wind tunnels contain an open test section, which results in a shear layer developing on the edge of the jet. This shear layer brings instabilities that can lead to resonance effects in the wind tunnel influencing the pressure distribution in the test section. To investigate the resonance effects, the classic wind tunnel corrections were applied to averaged drag measurements recorded in a resonance and nonresonance configuration of the model scale wind tunnel of the University of Stuttgart. The Mercker-Wiedemann-Method shows good compensation for the differing pressure gradients. Pressure measurements on the surface of the DrivAer Notchback model show different separation points on the rear window for measurements in resonance and nonresonance configuration. This means that the resonance effects can influence the separation significantly.
Technical Paper

Introduction of the AeroSUV-A New Generic SUV Model for Aerodynamic Research

2019-04-02
2019-01-0646
Since the introduction of the DrivAer model, an increasing amount of aerodynamic research and CAE method development activities are based on this detailed generic car body. Due to the Open Access nature of the model, it has not only been quickly adopted by academia but also by several automotive OEMs and CAE software developers. The DrivAer has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new sophisticated numerical methods. Within the last decades, the registration number of SUV, especially in Europe, has increased significantly. Among other things, a large cross-sectional area, an increased ground clearance and larger wheels characterize this kind of vehicle. The DrivAer is not capable of depicting this vehicle category. Therefore, there is a demand for an expansion of this generic vehicle concept.
Journal Article

The Recent Upgrade of the Model Scale Wind Tunnel of University of Stuttgart

2017-03-28
2017-01-1527
After being in operation since 1989, the 25% / 20% model scale wind tunnel of University of Stuttgart received its second major upgrade in 2016. In a first upgrade in 2001, a rolling road with a 5 belt system from MTS was installed. This system includes a steel center belt to simulate the road underneath the vehicle and four FKFS designed rubber belts for wheel rotation. The recent upgrade now enables the wind tunnel to be used not only for standard, steady state aerodynamic measurements but also for measurements of unsteady aerodynamic effects. This enables the use of the FKFS swing system as a standard measurement technique. Therefore, the former balance was replaced by a balance manufactured by AND with a high Eigenfrequency and the ability to sample the measurement data at up to 1000 Hz. The second large part of the upgrade was the replacement of the control system. With the new Wind Tunnel Control System (WCTS), control system.
X