Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Framework for Unmanned Aircraft Systems Safety Risk Management

2011-10-18
2011-01-2688
Although Unmanned Aircraft Systems (UAS) have now for some time been used in segregated airspace where separation from other air traffic can be assured, potential users have interests to deploy UAS in non segregated airspace. Recent technological and operational improvements give reason to believe that UAS safety and performance capabilities are maturing. But the skies can only really open up to UAS when there is an agreed upon UAS safety policy with commonly accepted UAS Safety Risk Management (SRM) processes enabling to show that the risks related to UAS operations in all the different airspace classes can be adequately controlled. The overall objective is to develop a UAS SRM framework, supporting regulators and applicants through provision of detailed guidelines for each SRM step to be conducted, including 1) system description, 2) hazard identification, 3) risk analysis, 4) risk assessment, 5) risk treatment.
Journal Article

Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

2012-10-22
2012-01-2148
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.
Technical Paper

Determining a Safety Baseline for Unmanned Aircraft Systems

2011-10-18
2011-01-2686
Unmanned Aircraft Systems (UAS) emerge as a viable, operational technology for potential civil and commercial applications in the National Airspace System (NAS). Although this new type of technology presents great potential, it also introduces a need for a thorough inquiry into its safety impact on the NAS. This study presents a systems-level approach to analyze the safety impact of introducing a new technology, such as UAS, into the NAS. Utilizing Safety Management Systems (SMS) principles and the existing regulatory structure, this paper outlines a methodology to determine a mandatory safety baseline for a specific area of interest regarding a new aviation technology, such as UAS Sense and Avoid. The proposed methodology is then employed to determine a baseline set of hazards and causal factors for the UAS Sense and Avoid problem domain and associated regulatory risk controls.
Technical Paper

Review of Engine Maintenance Concepts Applied to Wide Body Jets

1973-02-01
730375
In the early design stages of the advanced technology high-bypass-ratio engines, it became evident that maintainability considerations and more effective maintenance concepts would be necessary to achieve higher reliability and more economically successful powerplants. This paper reviews the major design considerations from a maintainability standpoint. It describes the concepts developed specifically to provide more effective maintenance for the wide-body jets. It discusses the effectiveness of these programs, and provides an insight into new philosophies and trends envisioned by the Federal Aviation Administration for future maintenance management programs.
Technical Paper

The Aviation Safety Analysis System (ASAS): An Overview

1982-02-01
821448
The Federal Aviation Administration has placed increasing emphasis on modern information systems to achieve safety improvements. The ASAS (Aviation Safety Analysis System) is a comprehensive new system to upgrade significantly the agency's ability to collect process and disseminate safety-related information.
Technical Paper

Effectiveness of Seat Cushion Blocking Layer Materials against Cabin Fires

1982-02-01
821484
Materials are available for preventing or retarding aircraft cabin fires involving urethane foam seat cushions. Realistic fire tests performed in a wide-body test article demonstrate that some in-flight and ramp fires can be prevented, and that the allowable time for safe evacuation can be significantly extended during a survivable postcrash fuel fire, when the urethane foam seat cushion is covered by a “blocking layer” material.
Technical Paper

Simulation's Potential Role in Advanced Aircraft Certification

1976-02-01
760931
In view of the fact that future generations of derivative or new aircraft will be faced with problems of increasing operating efficiency, new and more advanced technology will have to be introduced. To this end, the Federal Aviation Administration has been examining the certification question and has concluded that simulation may be increasingly important in the future certification activities. Through a contract with Lockheed Aircraft Company, the FAA will be able to review past use of industrial simulation in connection with certification.
Technical Paper

Data Bases of Aviation Incidents Resulting from Human Error

1987-01-01
872511
This paper presents a description of several Federal Aviation Administration (FAA) incident data systems that contain information on events which result primarily from human error. These data systems include reports of near midair collisions, operational errors, pilot deviations, and events reported through the Aviation Safety Reporting System (ASRS). Over 17,000 incident reports are received and stored in these data bases annually. This paper discusses the information content of the data bases, reporting procedures, system limitations, proposed improvements, and uses of the data.
Technical Paper

Canard Certification Loads — A Review of FAA Concerns

1987-10-01
871847
Since the first airplane was certified in 1927, the standard configuration has been with the main lifting surface or surfaces forward of the stabilizing surface. Although some of the advantages of the canard configuration were recognized quite early - by the Wright Brothers, for example - canard surfaces have been used to date only as additional control surfaces on some military airplanes, and on some amateur built airplanes. As a result, the Airworthiness Regulations of Reference 1 address only tail aft configurations. When FAA was first approached regarding certification of a canard configured small airplane, an FAA/Industry Empennage Loads Working Group was formed to develop technical proposals for the necessary rule changes and policy. The concerns addressed by this working group are discussed in the following sections.
Technical Paper

Certification Issues Regarding Advanced Technology Control Systems in Civil Rotorcraft

1987-10-01
871850
Microprocessor technology is allowing functions in aircraft to be implemented to a greater degree by digital process control than by conventional mechanical or electromechanical means. A review of this technology indicates a need for updated certification criteria. A high level of commitment to the technology such as fly-by-wire is completely beyond the scope of existing certification criteria. This paper emphasizes the areas of software validation levels, increased concern with basic power system qualification, and increased environmental concerns for electromagnetic interference and lightning.
Technical Paper

Certification Issues for a Tilt-Rotor Aircraft

1987-10-01
871852
Powered-lift aircraft, such as the V-22 tilt-rotor, are likely to spin-off a civil version. The present FAA airworthiness certification standards are not considered to be adequate for these unique aircraft. The FAA has drafted certification criteria and held a public conference to review the draft and identify significant technical certification issues that require further effort to establish correct standards for powered-lift aircraft. Some of those issues are discussed.
Technical Paper

An FAA Analysis of Aircraft Emergency Evacuation Demonstrations

1982-02-01
821486
Average continuous flow rates for each type of aircraft exit were examined in 89 full-scale evacuation demonstrations. Passengers tend to form continuous lines at available exits when evacuating an airplane. The study concludes that, with rare exception, the passenger rates of egress from the same type exit on different make and model airplanes are not significantly different. Passenger cabin configuration, seat pitch, and aisle width have no significant bearing on the egress rates provided the aircraft certification requirements for minimum aisle width and exit accessibility are met. Injuries resulting from actual emergency evacuations and evacuation demonstrations are also examined.
Technical Paper

Training Solutions from FAA Maintenance Human Factors Research & Development

2000-04-11
2000-01-2132
The FAA Office of Aviation Medicine has developed, delivered, and tested a variety of training systems over the past decade. The systems, their design, and guidance materials are directly transferable to the aviation industry at no cost. This paper describes the many training systems that are available.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
X