Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Nano-Filtered Intake Air on Diesel Particulate Matter Emissions

2004-03-08
2004-01-0642
While most reductions in diesel particulate matter (PM) have been implemented through internal engine improvements and aftertreatment systems, additional reductions may be found by controlling intake contaminants. Under the ideal conditions of operating with ultra low sulfur diesel fuel and filtered and conditioned intake air, a diesel engine produces a certain amount of PM. The PM emission levels may increase when intake air is polluted during harsh on- or off-road conditions. In this study, contaminants were allowed to enter the intake tract of the engine to determine whether or not increased particle ingestion leads to increased particulate matter expulsion. Diesel and test dust contaminants dispersed in intake air were filtered using both a conventional filtering medium and a nano-medium to determine their effects on diesel engine-out PM emissions. The paper characterizes the two media by microstructure, permeability, porosity, and fractional efficiency.
Technical Paper

Transient Analysis of Engine Nano-Particles Using a Fast-Scanning Differential Mobility Particle Analyzer

2004-03-08
2004-01-0971
The characterization of engine particulate matter size distributions has become an important topic in the investigation of particulate matter formation, transport, and emission reduction technology. The majority of current size distribution analyses are conducted during steady state engine conditions. Although steady state analysis is valuable, most engines in mobile applications are operated under transient conditions, creating a demand for the transient state analysis of particulate emission patterns. In order to measure the instantaneous emissions of an engine under transient conditions, instrumentation must respond to the changing engine conditions as quickly as possible. In this study, a fast-scanning nanometer Aerosol Size Analyzer (n-ASA) was used to measure the emitted particles of a heavy duty diesel engine during transient simulations. The results showed patterns of PM emissions at key areas throughout the test.
X