Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A New Port and Cylinder Wall Wetting Model to Predict Transient Air/Fuel Excursions in a Port Fuel Injected Engine

1996-05-01
961186
We have developed a new wall wetting model to predict the transient Air/Fuel ratio excursion in a port fuel injected (PFI) engine due to changes in air or fuel flow. The quasi-dimensional model accounts for fuel films both in the port as well as in the cylinder of a PFI engine and includes the effects of back-flow on the port fuel films to redistribute and vaporize the fuel. A multi-component fuel model is included in the simulation; it gives realistic fuel behavior and allows the effects of different fuel distillation curves to be studied. The multi-component fuel model calculates the changing composition of the fuel puddles in the port and cylinder during the cycle. The inclusion of an in-cylinder fuel film allows the model to be used for cold start conditions down to 290 K. The model uses the Reynold's analogy to calculate the fuel vaporization process and uses a boundary layer calculation to solve for the liquid film flow.
Technical Paper

Boosted HCCI - Experimental Observations in a Single Cylinder Engine

2014-04-01
2014-01-1277
Naturally aspirated Homogeneous Charge Compression Ignition (HCCI) operational window is very limited due to inherent issues with combustion harshness. Load range can be extended for HCCI operation using a combination of intake boosting and cooled EGR. Significant range extension, up to 8bar NMEP at 1000RPM, was shown to be possible using these approaches in a single cylinder engine running residual trapping HCCI with 91RON fuel with a 12:1 compression ratio. Experimental results over the feasible speed / load range are presented in this paper for a negative valve overlap HCCI engine. Fuel efficiency advantage of HCCI was found to be around 15% at 2.62bar / 1500RPM over a comparable SI engine operating at the same compression ratio, and the benefit was reduced to about 5% (best scenario) as the load increased to 5bar at the same speed.
X