Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Target Setting Principles and Methods in the Product Development Cycle

2010-04-12
2010-01-0014
Vehicle target setting is an evolving process based on continually changing internal (management, standards) and external (competitive and legal) requirements. In addition to evolving requirements, the process for establishing and documenting targets may not be clear. The objective of this paper is to detail the overall process of target setting, the critical factors to consider, and key definitions for each stage of the process. It will describe the complete process from early competitive benchmarking to final verification testing. Setting targets for a vehicle requires definition and thorough benchmarking of the competition, an understanding of the key attributes used to describe the vehicles' performance, and a clearly defined set of requirements. These requirements will be regulatory, corporate and competitively based and grouped by clearly defined, customer perceived attributes which can be cascaded to specific vehicle systems.
Journal Article

The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications

2010-04-12
2010-01-0300
A laboratory study was performed to assess the effects of sulfur poisoning and desulfation temperature on the NO conversion of a LNT+(Cu/SCR) in-situ system. Four LNT+(Cu/SCR) systems were aged for 4.5 hours without sulfur at 600, 700, 750, and 800°C using A/F ratio modulations to represent 23K miles of desulfations at different temperatures. NO conversion tests were performed on the LNT alone and on the LNT+SCR system using a 60 s lean/5 s rich cycle. The catalysts were then sulfur-poisoned at 400°C and desulfated four times and re-evaluated on the 60/5 tests. This test sequence was repeated 3 more times to represent 100K miles of desulfations. After simulating 23K miles of desulfations, the Cu-based SCR catalysts improved the NO conversion of the LNT at low temperatures (e.g., 300°C), although the benefit decreased as the desulfation temperature increased from 600°C to 800°C.
Journal Article

Diagnostics Design Process for Developmental Vehicles

2010-04-12
2010-01-0247
In this paper a diagnostic design process is proposed for developmental vehicles where mainstream design process is not well-suited. First a review of current practice in on-board vehicle fault diagnostics design is presented with particular focus on the application of this process to the development of the Ford Escape Hybrid Electric Vehicle (HEV) program and a demonstration Fuel Cell Electric Vehicle (FCEV) program. Based on the review and evaluation of these experiences, a new tool for diagnostics design is proposed that promises to make the design more traceable, to reduce the repetition of work, and to improve understandability and reuse.
Journal Article

Occupant Preferred Back Angle Relative to Head Restraint Regulations

2010-04-12
2010-01-0779
Having, by now, introduced several new vehicles that comply with FMVSS 202a, manufacturers are reporting an increased number of complaints from consumers who find that the head restraint is too close; negatively affecting their posture. It is speculated that one of the reasons that head restraints meeting the new requirement are problematic is that the FMVSS backset measurement is performed at a back angle that is more reclined than the back angle most drivers choose and the back angle at which the seat / vehicle was designed. The objective of this paper is to confirm this hypothesis and elaborate on implications for regulatory compliance in FMVSS 202a.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Journal Article

Methods in Vehicle Mass and Road Grade Estimation

2014-04-01
2014-01-0111
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade.
Journal Article

A Comparative Benchmark Study of using Different Multi-Objective Optimization Algorithms for Restraint System Design

2014-04-01
2014-01-0564
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Analyzing and Predicting Heterogeneous Customer Preferences in China's Auto Market Using Choice Modeling and Network Analysis

2015-04-14
2015-01-0468
As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Blunt Impact

2014-04-01
2014-01-0486
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Journal Article

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-04-12
2011-01-0981
This paper proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach.
Journal Article

Fracture Modeling Inputs for a Human Body Model via Inference from a Risk Curve: Application for Skull Fracture Potential

2012-04-16
2012-01-0562
A three-step process was developed to estimate fracture criteria for a human body model. The process was illustrated via example wherein skull fracture criteria were estimated for the Ford Human Body Model (FHBM)~a finite element model of a mid-sized human male. The studied loading condition was anterior-to-posterior, blunt (circular/planar) cylinder impact to the frontal bone. In Step 1, a conditional reference risk curve was derived via statistical analysis of the tests involving fractures in a recently reported dataset (Cormier et al., 2011a). Therein, Cormier et al., authors reported results for anterior-to-posterior dynamic loading of the frontal bone of rigidly supported heads of male post mortem human subjects, and fracture forces were measured in 22 cases. In Step 2, the FHBM head was used to conduct some underlying model validations relative to the Cormier tests. The model-based Force-at-Peak Stress was found to approximate the test-based Fracture Force.
Journal Article

Optimization Strategies to Explore Multiple Optimal Solutions and Its Application to Restraint System Design

2012-04-16
2012-01-0578
Design optimization techniques are widely used to drive designs toward a global or a near global optimal solution. However, the achieved optimal solution often appears to be the only choice that an engineer/designer can select as the final design. This is caused by either problem topology or by the nature of optimization algorithms to converge quickly in local/global optimal or both. Problem topology can be unimodal or multimodal with many local and/or global optimal solutions. For multimodal problems, most global algorithms tend to exploit the global optimal solution quickly but at the same time leaving the engineer with only one choice of design. The paper explores the application of genetic algorithms (GA), simulated annealing (SA), and mixed integer problem sequential quadratic programming (MIPSQP) to find multiple local and global solutions using single objective optimization formulation.
Journal Article

Further Validation of Age-Dependent FE Models of a Mid-Sized Male Thorax

2012-04-16
2012-01-0582
The objective of this study was to further validate three previously-developed, age-dependent finite element models representing 35, 55, and 75 year old mid-sized males. The validation was based on comparisons with the following published tests involving post mortem human subjects: oblique thoracic and abdominal pendulum impact (4-10 m/s), oblique and lateral thoracic pendulum impact (2.5 m/s), and lateral thoracic pendulum impact (4.3 and 6.7 m/s). The responses of the models were compared to cadaveric response corridors and responses from specific cadavers similar in size and age. When compared to the cadaveric response corridors, the model responses were generally within those corridors. When compared to the responses of specific cadavers, the results were mixed. In some of the cases the model responses predicted the age-dependency of the cadaveric responses. In other cases, the model responses had the opposite trend of those of the cadavers.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
X