Refine Your Search

Topic

Author

Search Results

Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Journal Article

Turbocharger Turbine Inlet Isentropic Pressure Observer Model

2015-04-14
2015-01-1617
Exhaust pressures (P3) are hard parameters to measure and can be readily estimated, the cost of the sensors and the temperature in the exhaust system makes the implementation of an exhaust pressure sensor in a vehicle control system a costly endeavor. The contention with measured P3 is the accuracy required for proper engine and vehicle control can sometimes exceed the accuracy specification of market available sensors and existing models. A turbine inlet exhaust pressure observer model based on isentropic expansion and heat transfer across a turbocharger turbine was developed and investigated in this paper. The model uses 4 main components; an open loop P3 orifice flow model, a model of isentropic expansion across the turbine, a turbine and pipe heat transfer models and an integrator with the deviation in the downstream turbine outlet parameter.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Journal Article

Effect of Ethanol on Part Load Thermal Efficiency and CO2 Emissions of SI Engines

2013-04-08
2013-01-1634
This paper presents engine dynamometer testing and modeling analysis of ethanol compared to gasoline at part load conditions where the engine was not knock-limited with either fuel. The purpose of this work was to confirm the efficiency improvement for ethanol reported in published papers, and to quantify the components of the improvement. Testing comparing E85 to E0 gasoline was conducted in an alternating back-to-back manner with multiple data points for each fuel to establish high confidence in the measured results. Approximately 4% relative improvement in brake thermal efficiency (BTE) was measured at three speed-load points. Effects on BTE due to pumping work and emissions were quantified based on the measured engine data, and accounted for only a small portion of the difference.
Technical Paper

Effect of Fuel Dissolved in Crankcase Oil on Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine

1997-10-01
972891
A single-cylinder, spark-ignited engine was run on a certification test gasoline to saturate the oil in the sump with fuel through exposure to blow-by gas. The sump volume was large relative to production engines making its absorption-desorption time constant long relative to the experimental time. The engine was motored at 1500 RPM, 90° C coolant and oil temperature, and 0.43 bar MAP without fuel flow. Exhaust HC concentrations were measured by on-line FID and GC analysis. The total motoring HC emissions were 150 ppmC1; the HC species distribution was heavily weighted to the low-volatility components in the gasoline. No high volatility components were visible. The engine was then fired on isooctane fuel at the above conditions, producing a total engine-out HC emission of 2300 ppmC1 for Φ = 1.0 and MBT spark timing.
Technical Paper

CFD Quality - A Calibration Study for Front-End Cooling Airflow

1998-02-23
980039
There is a recognized need in the industry to improve the quality of our CFD (Computational Fluid Dynamics) processes. One part of that initiative is to measure the accuracy of the current processes and identify opportunities for improvement. This report documents the results of a disciplined calibration process that uses statistical analyses techniques to assess CFD quality. The process is applied to UH3D, a Navier-Stokes solver used at Ford to model vehicle front-end geometry and engine cooling systems. The study is focused on a Taurus under relatively ideal circumstances to address one of the major deliverables from the analytical process, i.e., what is the accuracy of the front-end cooling airflow predictions? To address this question, high quality isothermal experiments and calculations were conducted on twenty-three front-end configurations at four non-idle operating conditions.
Technical Paper

Oscillating Heat Transfer in Reversing Pipe Flow

1998-02-23
980061
Oscillating heat transfer is a fundamental phenomenon occurring in Stirling machines and IC engines. A group of relevant dimensionless numbers which characterize this problem is identified by dimensional analysis. The convective heat transfer coefficient, or Nusselt number, is a function of the Reynolds number, the Prandtl number, plus the dynamic Reynolds number and the dimensionless amplitude, when compressibility is not considered. The case for compressible fluid is more complicated. An experiential study confirms above analysis and results in a nonlinear longitudinal fluid temperature distribution in the pipe. The history effect is found to affect the heat transfer rate remarkably. A correlation equation for Nusselt number is obtained by multivariate analysis.
Technical Paper

Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine

1998-02-23
980495
Fuel-air mixing in a direct-injection SI engine was studied to further improve full-load torque output. The fuel-injection location of DI vs. PFI results in different heat sources for fuel evaporation, hence a DI engine has been found to exhibit higher volumetric efficiency and lower knocking tendency, resulting in higher full-load torque output [1]. The ability to change injection timing of the DI engine affects heat transfer and mixture temperature, hence later injection results in lower knocking tendency. Both the higher volumetric efficiency and the lower knocking tendency can improve engine torque output. Improving volumetric efficiency requires that the fuel is injected during the intake stroke. Reducing knocking tendency, in contrast, requires that the fuel is injected late during the compression stroke. Thus, a strategy of split injection was proposed to compromise the two competing requirements and further increase direct-injection SI engine torque output.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Control Challenges and Methodologies in Fuel Cell Vehicle Development

1998-10-19
98C054
In recent years, rapid and significant advances in fuel cell technology, together with advances in power electronics and control methodology, has enabled the development of high performance fuel cell powered electric vehicles. A key advance is that the low temperature (80°C) proton-exchange-membrane (PEM) fuel cell has become mature and robust enough to be used for automotive applications. Apart from the apparent advantage of lower vehicle emission, the overall fuel cell vehicle static and dynamic performance and power and energy efficiency are critically dependent on the intelligent design of the control systems and control methodologies. These include the control of: fuel cell heat and water management, fuel (hydrogen) and air (oxygen) supply and distribution, electric drive, main and auxiliary power management, and overall powertrain and vehicle systems.
Technical Paper

Friction Reduction in Lubricated Components Through Engine Oil Formulation

1998-10-19
982640
Improvement of engine fuel efficiency through the use of low friction engine oils is a major task in engine lubrication research. This friction reduction can be achieved by improving the rheological characteristics and elastohydrodynamic (EHD) properties of engine oils, and by controlling boundary chemical interactions between oil-based additives and lubricated components in the engine. In order to achieve minimal frictional power loss under all lubrication regimes, engine tribological systems must be designed to effectively use advanced lubricant technology, material and surface modifications. This paper presents results of cooperative research addressing opportunities for minimizing friction through extension of hydrodynamic lubrication regime in lubricated components using various formulation approaches. A set of experimental oils has been evaluated using laboratory test rigs that simulate hydrodynamic, EHD, mixed and boundary lubrication.
Technical Paper

Transient Heat Transfer of 42V Ni-MH Batteries for an HEV Application

2002-06-03
2002-01-1964
While a Ni-MH battery has good performance properties, such as a high power density and no memory effect, it needs a powerful thermal management system to maintain within the required narrow thermal operating range for the 42V HEV applications. Inappropriate battery temperatures result in degradation of the battery performance and life. For the battery cooling system, air is blown into the battery pack. The exhaust is then vented outside due to potential safety issues with battery emissions. This cooling strategy can significantly impact fuel economy and cabin climate control. This is particularly true when the battery is experiencing frequent charge and discharge of high-depths in extreme hot or cold weather conditions. To optimize performance and life of HEV traction batteries, the battery cooling design must keep the battery operation temperature below a maximum value and uniform across the battery cells.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

2002-03-04
2002-01-0256
This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Correlation of Exhaust Valve Temperatures with Engine Reynolds Number in a 1.9 L Engine

1992-02-01
920063
Exhaust valve temperatures are important in the selection of valve materials, and have strong effects on borderline spark angle and pre-ignition borderline limit. In order to support analytical modeling of exhaust valve temperatures and to correlate exhaust valve temperatures as a function of engine Reynolds number, exhaust valve temperatures were mapped as a function of spark angle and engine coolant temperatures at 2000 rpm. In addition temperatures were measured at wide open throttle at 2000, 3000, and 4000 rpm. The exhaust valve temperature was expressed as a dimensionless temperature using the exhaust gas temperature and the engine coolant temperature, then the dimensionless temperature was correlated as a function of spark angle and engine Reynolds number. The results indicate that once the temperature is known at a given speed and load condition for any one cylinder, the temperature at other speed and load conditions can be reasonably estimated.
Technical Paper

Development of a One-Dimensional Engine Thermal Management Model to Predict Piston and Oil Temperatures

2011-04-12
2011-01-0647
A new, 1-D analytical engine thermal management tool was developed to model piston, oil and coolant temperatures in the Ford 3.5L engine family. The model includes: a detailed lubrication system, including piston oil-squirters, which accurately represents oil flow rates, pressure drops and component heat transfer rates under non-isothermal conditions; a detailed coolant system, which accurately represents coolant flow rates, pressure drops and component heat transfer rates; a turbocharger model, which includes thermal interactions with coolant, oil, intake air and exhaust gases (modeled as air), and heat transfer to the surroundings; and lumped thermal models for engine components such as block, heads, pistons, turbochargers, oil cooler and cooling tower. The model was preliminarily calibrated for the 3.5L EcoBoost™ engine, across the speed range from 1500 to 5500 rpm, using wide-open-throttle data taken from an early heat rejection study.
Technical Paper

Optical and Infrared In-Situ Measurements of EGR Cooler Fouling

2013-04-08
2013-01-1289
The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce emitted particulate matter, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with on-engine liquid to gas heat exchangers. A common problem with this approach is the build-up of a fouling layer inside the heat exchanger due to thermophoresis and condensation, reducing the effectiveness of the heat exchanger in lowering gas temperatures. Literature has shown the effectiveness to initially drop rapidly and then approach steady state after a variable amount of time. The asymptotic behavior of the effectiveness has not been well explained. A range of theories have been proposed including fouling layer removal, changing fouling layer properties, and cessation of thermophoresis.
Technical Paper

Rheological Characterization of Lubricant-Methanol-Water Emulsions

1992-10-01
922283
Rheological measurements were performed on a series of lubricants for flexible fuel vehicles, and blends of water or methanol in these oils. A series of measurements, including kinematic viscosity, viscosity at low and high shear rates, low shear viscosity under borderline pumping conditions, and density were performed on all oils and blends. The effects of mixing conditions, such as mixing speed and temperature on these properties were also studied. Viscosity increases when water emulsifies in oils. Methanol exhibits limited solubility in all oils, but more so in synthetic base oils. Viscosity tests at 248 K (-25°C) do not indicate the onset of critical pumping conditions, even at high concentrations of water or methanol. Tests at high shear rates at 323 K (50°C) suggest that water-oil emulsions are quite stable, while methanol-oil blends lose their methanol content either due to evaporation or shear-induced separation.
Technical Paper

The Effect of Valve Overlap on Idle Operation: Comparison of Model and Experiment

1993-10-01
932751
Validation of the Ford General Engine SIMulation program (GESIM) with measured firing data from a modified single cylinder Ricardo HYDRA research engine is described. GESIM predictions for peak cylinder pressure and burn duration are compared to test results at idle operating conditions over a wide range of valve overlap. The calibration of GESIM was determined using data from only one representative world-wide operating point and left unchanged for the remainder of the study. Valve overlap was varied by as much as 36° from its base setting. In most cases, agreement between model and data was within the accuracy of the measurements. A cycle simulation computer model provides the researcher with an invaluable tool for acquiring insight into the thermodynamic and fluid mechanical processes occurring in the cylinder of an internal combustion engine.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Ranking of Lubricants for Flexible Fuel Vehicles (FFV) by a Short Engine Sequence Test

1993-10-01
932790
A short engine sequence test, based on the Sequence VD procedure, was used to screen FFV oil candidates more rapidly. Since only one engine is needed to compare the wear-protection performance of several lubricants, engine hardware variability is not a significant issue in this test procedure. Several lubricants, some specially formulated for FFV engines, were tested using standard Sequence VD engine hardware which includes molybdenum top piston-rings. Results showed clear discrimination of the performance of oil candidates. These lubricants were also tested using an engine with chromium-faced top rings and exhibited similar performance ranking.
X