Refine Your Search

Topic

Author

Search Results

Journal Article

Exhaust Manifold Durability Subject to Splash Quenching

2015-04-14
2015-01-1735
Exhaust manifold design is one of the more challenging tasks for the engine engineer due to the harsh thermal and severe vibration environment. Extremely high exhaust gas temperatures and dynamic loading combine to subject the manifold to high cyclic stress when the material has reduced fatigue strength due to the high temperature. A long service life before a fatigue failure is the objective in exhaust manifold design. Accumulation of fatigue damage can occur from dynamic loading and thermal loading combined. Thermal mechanical fatigue (TMF) is a primary mechanism for accumulating fatigue damage. TMF typically occurs when a vehicle driving cycle has operating conditions that repeatedly change the exhaust gas temperature between hot and cold. Another way to experience temperature cycling is through splash quenching. Splash quenching was analyzed and found to rapidly accumulate fatigue damage.
Journal Article

Analysis of High Mileage Gasoline Exhaust Particle Filters

2016-04-05
2016-01-0941
The purpose of this work was to examine gasoline particle filters (GPFs) at high mileages. Soot levels for gasoline direct injection (GDI) engines are much lower than diesel engines; however, noncombustible material (ash) can cause increased backpressure, reduced power, and lower fuel economy. In this study, a post mortem was completed of two GPFs, one at 130,000 mi and the other at 150,000 mi, from two production 3.5L turbocharged GDI vehicles. The GPFs were ceramic wall-flow filters containing three-way catalytic washcoat and located downstream of conventional three-way catalysts. The oil consumption was measured to be approaching 23,000 mpqt for one vehicle and 30,000 mpqt for the other. The ash contained Ca, P, Zn, S, Fe, and catalytic washcoat. Approximately 50 wt% of the collected ash was non-lubricant derived. The filter capture efficiency of lubricant-derived ash was about 50% and the non-lubricant metal (mostly Fe) deposition rate was 0.9 to 1.2 g per 10,000 mi.
Technical Paper

How Well Can mPEMS Measure Gas Phase Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0369
“Real world emissions” is an emerging area of focus in motor vehicle related air quality. These emissions are commonly recorded using portable emissions measurement systems (PEMS) designed for regulatory application, which are large, complex and costly. Miniature PEMS (mPEMS) is a developing technology that can significantly simplify on-board emissions measurement and potentially promote widespread use. Whereas full PEMS use analyzers to record NOx, CO, and HCs similar to those in emissions laboratories, mPEMS tend to use electrochemical sensors and compact optical detectors for their small size and low cost. The present work provides a comprehensive evaluation of this approach. It compares measurements of NOx, CO, CO2 and HC emissions from five commercial mPEMS to both laboratory and full regulatory PEMS analyzers. It further examines the use of vehicle on-board diagnostics data to calculate exhaust flow, as an alternative to on-vehicle exhaust flow measurement.
Journal Article

Dynamic Modeling of Fuel Cell Systems for Use in Automotive Applications

2008-04-14
2008-01-0633
This paper describes a proton-exchange-membrane Fuel Cells (FC) system dynamic model oriented to automotive applications. The dynamic model allows analysis of FC system transient response and can be used for: a) performance assessment; b) humidification analysis; c) analysis of special modes of operation, e.g., extended idle or freeze start; d) model based FC control design and validation. The model implements a modular structure with first principle based components representation. Emphasis is placed on development of a 1-D membrane water transport model used to simulate gas to gas humidification and stack membrane water diffusion. The Simulink implementation of the model is discussed and results showing FC system transient behavior are presented.
Technical Paper

Ignition Switch Material Definition to Avoid Hard to Start Issue

2020-01-13
2019-36-0138
Nowadays, develop and launch a new product in the market is hard to every company. When we talk about a launch new vehicle to the customers, this task could be considered more difficult than other products whether imagine how fast the technology should be integrated to vehicle. There are main pillars to be considered in this scenario: low cost, design, innovation, competitiveness and safety. Whereas Brazilian economic scenario, all OEM has to be aware to opportunity to make the product profitable and keep acceptable quality. This combination between low cost and quality could be broken or not distributed equally between the pillars. Based on that, in some cases could have a quality broken that will affect directly the customer. This paper will focus on project to define of the new ignition switch, when the main challenge to achieve the cost reduction target was defined to change a material to electrical terminals.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Technical Paper

Predicting Variation in the NVH Characteristics of an Automatic Transmission using a Detailed Parametric Modelling Approach

2007-05-15
2007-01-2234
Generally within engineering design, the current emphasis is on biasing the development process towards increased virtual prototyping and reduced “real” prototyping. Therefore there is a requirement for more CAE based automated optimisation, Design of Experiments and Design for Six Sigma. The main requirements for these processes are that the model being analysed is parametric and that the solution time is short. Prediction of gear whine behaviour in automatic transmissions is a particularly complex problem where the conventional FEA approach precludes the rapid assessment of “what if?” scenarios due to the slow model building and solution times. This paper will present an alternative approach, which is a fully parametric functionality-based model, including the effects of and interactions between all components in the transmission. In particular the time-varying load sharing and misalignment in the planetary gears will be analysed in detail.
Technical Paper

Fuel Permeation Performance of Polymeric Materials Analyzed by Gas Chromatography and Sorption Techniques

1998-05-04
981360
This paper describes the results of permeation and sorption tests conducted to assess the properties of several plastic materials as barriers to fuel. The materials examined include ethylene-vinyl alcohol copolymers (EVOH), nylon, high density polyethylene, polyketone, poly-vinyledene fluoride (PVDF) as well as tetra-fluoro-ethylene, hexa-fluoro-propylene and vinyledene fluoride terpolymers (THV). The permeation from thin films of these materials exposed to methanol or CM15 was analyzed (speciated) by gas chromatography. These results are compared to those of parallel sorption experiments conducted on the same materials. The goal of this work is to determine the materials best suited for fuel barrier applications.
Technical Paper

Estimating Actual Exhaust Gas Temperature from Raw Thermocouple Measurements Acquired During Transient and Steady State Engine Dynamometer Tests

2007-04-16
2007-01-0335
Thermocouples are commonly used to measure exhaust gas temperature during automotive engineering experiments. In most cases, the raw measurements are used directly as an absolute indication of the actual exhaust gas temperature. However, in reality, the signal from a TC is only an indication of its own tip temperature. The TC indicated tip temperature can deviate significantly from the actual gas temperature due to factors such as thermal capacitance of the tip itself, and heat transfer to the exhaust pipe wall through conduction and radiation. A model has been developed that calculates the effects of these factors to provide an estimate of the actual exhaust gas temperature. Experiments were performed to validate the model under both transient and steady state engine dynamometer conditions utilizing three popular sizes of TCs. Good correlation among predictions for various TC sizes confirms the model's accuracy.
Technical Paper

The Design for Six Sigma Approach for the Development of a Carbon Canister for Tier II, LEV II and PZEV Emission Levels

2007-04-16
2007-01-1090
Global concerns involving smog, ozone formation, carcinogens and greenhouse gases have produced increasingly stringent governmental emission regulations worldwide. In the United States, the Environmental Protection Agency (EPA) introduced Tier II emissions regulations and the California Air Resources Board (CARB) established Low Emission Vehicles (LEV II) and Partial Zero Emission Vehicles (PZEV) legislation. These initiatives have created the most stringent emissions regulations to date. Vehicle manufacturers have had to improve their evaporative emission control systems to comply with these standards. The evaporative emission control system is engineered to protect our environment from fuel vapor emissions. The carbon canister is the most important component of the evaporative emissions system due to its ability to capture fuel vapors continuously during the life of the vehicle. Ford Motor Company redesigned its carbon canisters after utilizing Experimental Design techniques.
Technical Paper

Static and Fatigue Performance of Fusion Welded Uncoated DP780 Coach Joints

2008-04-14
2008-01-0695
Typical automotive joints are lap, coach, butt and miter joints. In tubular joining applications, a coach joint is common when one tube is joined to another tube without the use of brackets. Various fusion joining processes are popular in joining coach joints. Common fusion joining processes are Gas Metal Arc Welding (GMAW), Laser and Laser Hybrid, and Gas Tungsten arc welding (GTAW). In this study, fusion welded 2.0 mm uncoated DP780 steel coach joints were investigated. Laser, Gas metal arc welding (GMAW), and laser hybrid (Laser + GMAW) welding processes were selected. Metallurgical properties of the DP780 fusion welds were evaluated using optical microscopy. Static and fatigue tests were conducted on these joints for all three joining processes. It was found that joint fit-up, type of welding process, and process parameters, especially travel speed, have significant impact on static and fatigue performance of the coach joints in this study.
Technical Paper

Improving Six Sigma Project results through Binary Logistic Regression - a case study analysis

2007-11-28
2007-01-2646
Binary Logistic Regression is a powerful tool to apply in Six Sigma projects, when the response is characterized as an attribute. This paper has the purpose to present a case study based on Binary Logistic Regression application in a Six Sigma DMAIC project, where the output of the process could only be measured as “component assembled Ok or component assembled Not Ok” - a binary response.
Technical Paper

Six Sigma Methodology Application for Performance Evaluation of Different Configurations of Seat Belts Reinforcements during a Project Development

2007-11-28
2007-01-2665
The relation cost versus performance in the design of an automobile is crucial for its success. These two characteristics, much like the project development timing, are closely related to the attributes that the new design must achieve (e.g. weight, fuel economy, torsional stiffness, NVH, safety, etc.). In this respect, the design optimization of body reinforcements (i.e. part thickness, quantity of reinforcements, and number of spot welds) contributes greatly to a sound and robust project concept. This paper describes one application of 6-Sigma methodology to evaluate the performance of different configurations of seat belt reinforcements resulting in an optimized concept that achieved the proposed performance targets with weight and sub-assembly complexity reduction. Using a Design of Experiments (DOE) and Finite Element Analysis (FEA), each proposal was evaluated for its resistance to plastic deformation.
Technical Paper

Applying Six Sigma with the Theory of Inventive Problem Solving (TRIZ) to Reduce the Time to Solve Problems

2007-11-28
2007-01-2585
This paper explores the interrelation of Six Sigma and TRIZ. The use of Six Sigma DMAIC and/or DCOV principles with merging of inventive principles of TRIZ is a suggestion of paths forward to reduce the time to solve problems. The search for solutions is paralyzed in some circumstances because of psychological inertia because of it is natural for people to rely on their own experience and not think outside their comfort spot. Six Sigma pollinated with TRIZ is an opportunity to find the ideal final result. A case study on a Truck Turn Signal is used to illustrate the idea.
Technical Paper

Regression Model application in Six Sigma Projects

2008-10-07
2008-36-0109
Six Sigma represents a mindset change – part of this mindset, is to focus our decision based on data, looking for the root causes of our issues instead of acting on the effects of the causes. Aligned to this statement, the purpose of this paper is to present through a case study, how the concepts of Six Sigma – a data driven mindset, can be used to improve a process, reducing waste and keeping the same standards of quality. The focus is to show how a transfer function, generated through a multiple regression can optimize a production process, reducing waste and improving quality.
Technical Paper

Six Sigma Disciplines in Automotive Applications

2004-03-08
2004-01-0684
Six-Sigma provides the opportunity and discipline to eliminate mistakes, improve morale, and save money. Doing things right and keeping them consistent is the idea behind Six-Sigma. A fundamental objective of Six-Sigma is to achieve customer satisfaction with continuous improvement in quality. Process control and manufacturing variation reduction is important but companies often find that the majority of their quality problems were actually created during the design process. An example of improving manufacturing process capability to give bottom line cost savings and customer satisfaction is presented in this paper. The methodology to increase system robustness through Design for Six Sigma (DFSS) is presented and demonstrated through the extension of the case study of crankshaft journal lobing design robustness improvements.
Technical Paper

A Transient, Multi-Cylinder Engine Model Using Modelica

2003-10-27
2003-01-3127
This paper describes a transient, thermodynamic, crank angle-based engine model in Modelica that can be used to simulate a range of advanced engine technologies. A single cylinder model is initially presented and described, along with its validation against steady-state dynamometer test data. Issues related to this single cylinder validation are discussed, including the appropriate conservation of hot residual gases under very early intake valve opening (IVO) conditions. From there, the extension from a single cylinder to a multi-cylinder V8 engine model is explained and simulation results are presented for a transient cylinder-deactivation scenario on a V8 engine.
Technical Paper

Essentials of Design Robustness in Design for Six Sigma (DFSS) Methodology

2004-03-08
2004-01-0813
Design for Six Sigma (DFSS) is a systematic process and a disciplined problem prevention approach to achieve business excellence. Robust design is the heart of DFSS. To enable the success of robust parameter design, one should start with good design concept. Axiomatic Design, a fundamental set of principles that determine good design practice, can help to facilitate a project team to accelerate the generation of good design concept. Axiomatic Design holds that uncoupled designs are to be preferred over coupled design. Although uncoupled designs are not always possible, application of axiomatic design principles in DFSS presents an approach to help DFSS team focus on functional requirements to achieve design intents and maximize product reliability. As a result of the application of axiomatic design followed by parameter design, the DFSS team achieved design robustness and reliability. A hydraulic lash adjuster case study will be presented.
Technical Paper

Six Sigma Disciplines Utilizing Design for Six Sigma Strategy in Automotive Applications

2004-03-08
2004-01-1751
“Doing the right things” is important for a company to stay in business while developing the right products to satisfy customers and make profits. Design for Six Sigma (DFSS) is a disciplined problem prevention approach and a systematic process to prevent defects in what is important to the customer. This paper builds on the rationale and opportunities presented in the SAE paper of Six Sigma Disciplines in Automotive Applications for improving design robustness. The methodology to increase system robustness through DFSS is presented and demonstrated through the extension of the case study of crankshaft journal lobing design robustness improvements realized from the traditional DMAIC Six Sigma project presented in the SAE paper of Six Sigma Disciplines in Automotive Applications.
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

2002-03-04
2002-01-0290
Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
X