Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
Journal Article

Dynamic Modeling of Fuel Cell Systems for Use in Automotive Applications

2008-04-14
2008-01-0633
This paper describes a proton-exchange-membrane Fuel Cells (FC) system dynamic model oriented to automotive applications. The dynamic model allows analysis of FC system transient response and can be used for: a) performance assessment; b) humidification analysis; c) analysis of special modes of operation, e.g., extended idle or freeze start; d) model based FC control design and validation. The model implements a modular structure with first principle based components representation. Emphasis is placed on development of a 1-D membrane water transport model used to simulate gas to gas humidification and stack membrane water diffusion. The Simulink implementation of the model is discussed and results showing FC system transient behavior are presented.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

Water Avoidance Design Strategy for Capacitive Exterior Handles

2020-01-13
2019-36-0187
Nowadays, capacitive handles are increasing their use in high-end commercial vehicles. This particular handle applies a technology that permits to unlock and even lock the vehicle without a key. As benefit for current life, the customer has the possibility to access and close the vehicles more efficiently and faster, just possessing the key in the pocket or any close compartment that the user is carrying, for example, bag, purse, backpack. Even though, the design of capacitive exterior handle must follow several design strategies to avoid nonfunctional in rainy climate. Water could work as a blocker for the sensor signal captured, special design strategies that must be taken in order to minimize that the liquid could ingress the handle and even be retained on the region that sensor is located.
Technical Paper

Simultaneous Real-Time Measurements of NO and NO2 in Medium Duty Diesel Truck Exhaust

2007-04-16
2007-01-1329
The goal of the present work was to investigate the ability of the SEMTECH®-D Portable Emissions Measurement System (PEMS) to provide simultaneous, accurate, real-time (1Hz) measurements of NO and NO2 in vehicle exhaust. Extensive chassis dynamometer laboratory evaluation studies of the SEMTECH® system were conducted. The instantaneous (1Hz) NOx emissions were measured using a conventional chemiluminescence analyzer (CLA) and were compared to the sum of the instantaneous NO and NO2 measurements from the SEMTECH®-D. The sum of the NO and NO2 emissions measured by the SEMTECH® were in excellent agreement (within 95% in most cases) with the total NOx measurements from the conventional CLA. During the laboratory evaluation studies, several Federal Test Procedure (FTP) drive cycles were conducted. Examples of the NO and NO2 concentration and mass emissions measured using the SEMTECH®-D are presented along with the corresponding SEMTECH®-D detection limits.
Technical Paper

Ford's Facility Climate Change Initiatives: Lessons Learned From Early Action

2008-04-14
2008-01-0680
Climate change initiatives such as carbon dioxide (CO2) inventory reporting, emissions trading, and carbon offsets projects are receiving increased public and corporate attention worldwide. Through early, voluntary actions, Ford Motor Company's manufacturing operations have gained first-hand experience with these emerging policy tools and our global, centralized approach has supported our participation in facility CO2 initiatives in a more cost-effective and operationally-efficient manner. Ford's early action has also developed internal expertise which enables us to share our lessons learned with others beginning to investigate climate change initiatives.
Technical Paper

Phase-based TEOM Measurements Compared with Traditional Filters for Diesel PM

2003-03-03
2003-01-0783
Collection of diesel exhaust using the Tapered Element Oscillating Microbalance (TEOM) instrument was investigated as an alternative to the traditional method of filter weighing for particulate matter mass determination. Such an approach, if successful, would eliminate considerable manual labor involved in weighing, as well as the delay of hours or days before final results were known. To avoid known artifacts in the second-by-second mode of operation, the TEOM was used in a phase-by-phase mode and was equilibrated with air of constant temperature and humidity before each measurement. Electrically operated valves were used to automate the equilibration and measurement process. The study also included a comparison between two types of TEOM filter - an older type and a new one designed by the TEOM manufacturer for more uniform flow and less flexing. Best results were obtained with the TEOM using the new filter under no-flow conditions.
Technical Paper

Demisting of Vehicle Air Intake Using Plane Baffles

2003-03-03
2003-01-1077
The penetration of rainwater through the heating ventilation and air conditioning system, HVAC, of a vehicle directly affects the provision of thermal comfort within the vehicle passenger compartment. The first element of a typical HVAC system, namely the cowl box is considered. The purpose of the airway from the cowl grille openings to the air filter, immediately before the blower, is to ensure proper water separation from the incoming air stream before entry onto the air filter and onwards into the rest of the HVAC system. This is achieved by ensuring standing water within the cowl is quickly drained and that water rain droplets or water flows from the windshield and body are separated from the air stream, hence minimising the effect on the total system volumetric flow rate. An experimental study is conducted to examine the effect of plane baffles on the airflow filed within a rectangular duct. A set of plane baffle plates is placed within the cowl duct.
Technical Paper

Evaluating the Benefits of On-Board Measurement of Ambient Humidity Part-2: Effect on Torque Estimation Accuracy and Drivability

2016-04-05
2016-01-1068
Engine Mapping is usually performed under nominal conditions which include a humidity level of 8 g/Kg. Customers driving at different humidity conditions (which may range from 1 g/Kg in dry and colder climates and up to 35 g/Kg as in tropical climates) may experience a degraded performance due to the errors in engine torque estimation provided by the ECU. The torque estimation error interacts with many other features that affect drivability, such as the peak performance of the engine, transmission shift quality, etc. This paper extends the investigation in Part-1 by analyzing and quantifying the torque estimation error that may result in certain customer use cases at high humidity conditions, due to the mismatch between calibrated and actual conditions. The analysis is mainly performed for Speed-Density systems (MAP sensor based) but the effect of mass air flow sensor (MAF sensor) based systems is also briefly considered.
Technical Paper

Evaluating the Benefits of On-Board Measurement of Ambient Humidity Part-1: Effect on Spark Timing and Combustion Efficiency

2016-04-05
2016-01-1067
Engine Mapping is usually performed under nominal conditions which include a humidity level of 8 g/Kg. Customers driving at different conditions (which may range from 1 g/Kg in colder and dry climates and up to 35 g/Kg as in tropical climates) may experience less-than-optimal engine combustion which results in reduced onroad fuel economy. Humidity has an EGR-equivalent effect, and measuring it will correct the spark timing, mainly at Maximum Brake Torque (MBT) and borderline conditions, and claim back some of those losses. This paper aims at quantifying the small fuel economy benefits associated with on-board humidity measurement for certain customer use cases at high humidity conditions. Dyno data was collected for a Ford 2.3L GTDI engine at three speed load points, and intake air humidity was varied between 20% and 80% relative humidity. The effect of humidity compensation on spark timing, combustion phasing, knock, and consequently on overall engine efficiency was analyzed.
Technical Paper

Heart-Rate Monitoring Using Single Camera

2017-03-28
2017-01-1434
Heart rate is one of the most important biological features for health information. Most of the state-of-the-art heart rate monitoring systems rely on contact technologies that require physical contact with the user. In this paper, we discuss a proof-of-concept of a non-contact technology based on a single camera to measure the user’s heart rate in real time. The algorithm estimates the heart rate based on facial color changes. The input is a series of video frames with the automatically detected face of the user. A Gaussian pyramid spatial filter is applied to the inputs to obtain a down-sampled high signal-to-noise ratio images. A temporal Fourier transform is applied to the video to get the signal spectrum. Next, a temporal band-pass filter is applied to the transformed signal in the frequency domain to extract the frequency band of heart beats. We then used the dominant frequency in the Fourier domain to find the heart rate.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Technical Paper

Vehicle Integrated Non-Intrusive Monitoring of Driver Biological Signals

2011-04-12
2011-01-1095
A vehicle integrated sensing and analysis system has been designed, implemented, and demonstrated to nonintrusively monitor several biological signals of the driver. The biological driver signals measured by the system are the heart electrical signals or pseudo Lead-I electrocardiography (pLI-ECG), the galvanic skin response (GSR) or electrical conductance measured from the driver's fingers to palm, the palm skin temperature, the face skin temperature, and the respiration rate. The pLI-ECG and GSR measurements are made through direct contact of the driver hands with stainless steel electrodes integrated in the steering wheel rim. The temperature measurements are made with non-contacting infrared temperature sensors, also located on the steering wheel. The respiration rate was measured using a flexible thin film piezoelectric sensor affixed to the seatbelt.
Technical Paper

Evaluation of a High Speed, High Resolution Gas Chromatography Instrument for Exhaust Hydrocarbon Speciation

2005-04-11
2005-01-0683
The ozone forming potential (OFP) and specific reactivity (SR) of tailpipe exhaust are among the factors that determine the environmental impact of a motor vehicle. OFP and SR measurements require a lengthy determination of about 190 non-methane hydrocarbon species. A rapid gas chromatography (GC) instrument has been constructed to separate both the light (C2 - C4) and the midrange (C5 - C12) hydrocarbons in less than 10 minutes. The limit of detection is about 0.002 parts per million carbon (ppmC). Thirty exhaust samples from natural gas vehicles (NGV's) were analyzed to compare the rapid GC method with the standard GC method, which required 40-minute analyses on two different instruments. In general, evaluation of the commercial prototype from Separation Systems, Inc., indicates that a high speed, high resolution gas chromatograph can meet the need for fast, efficient exhaust hydrocarbon speciation.
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Technical Paper

Method Development for Evaluating Microbiological Growth on and Attachment to Aluminum Air Conditioner Evaporator Core Surfaces

2006-04-03
2006-01-1645
Corrosion failures of aluminum air conditioner evaporator cores have been reported in regions where the climate is relatively warm and humid. Microbiologically-influenced corrosion [MIC] has been implicated in these failures. Application of surface-treatment chemicals may inhibit microbiological (bacterial) growth and/or attachment, thereby reducing the potential for MIC. In this study, two laboratory methods were developed to evaluate selected surface-treatment chemicals for their ability to inhibit bacterial growth and reduce bacterial attachment to treated surfaces. Using the developed methods, two controlled-atmosphere brazed aluminum core materials and three surface-treatment chemicals were evaluated. Neither of the untreated core materials was found to inhibit the growth of the bacteria tested.
Technical Paper

Automotive Refrigerant System Induced Evaporator Hoot

2005-05-16
2005-01-2509
The automotive refrigerant systems can occasionally exhibit a transient hoot/whistle type noise under certain operating conditions. High pressure/velocity refrigerant flow through an evaporator core can readily excite the inherent acoustical and/or structural modes, resulting in audible transient tones. This condition if present can be experienced while driving away from a short stop and can last 2 to 10 seconds. The ambient conditions suitable for creating this noise are - moderate/high air-conditioning (A/C) load during days at 85-95° F temperatures with high humidity. Possible noise generating mechanisms have been discussed in earlier publications and our findings during this study indicate that they are excited by the high velocity superheated refrigerant vapor flow through the evaporator core plates. Examples of this transient noise and its spectral characteristics are presented to characterize this refrigerant system induced issue.
Technical Paper

Freeze Protection of Onboard Urea Co-Fueling System

2006-04-03
2006-01-0645
The urea co-fueling approach to refilling a urea storage container onboard a vehicle is based on the design of a two-fluid dispensing nozzle. With a single refueling operation the nozzle enables an independent delivery of two fluids, diesel fuel and urea, into two separate containers. The person refueling the vehicle needs no new skills or knowledge. But most importantly, the co-fueling method eliminates a separate and a critical action of keeping up with timely refills of the urea as the condition for emissions compliance for the vehicle. However, freezing of aqueous solution of urea below -11.5°C puts additional demands on the design of the two-fluid nozzle and the vehicle fill pipe receptacle, so that a reliable co-fueling process is assured at these cold weather conditions. The paper describes the methods that prevent formation of ice in the co-fueling fill pipe, which would enable refilling of urea during continuous use of the vehicle at temperatures below urea freezing point.
Technical Paper

Evaporator Icing Protection Test Method

2005-04-11
2005-01-1506
Evaporator icing is an operating state of automotive air conditioning systems in which the condensate water formed in the evaporator turns to ice. This failure mode is normally mitigated by a control system that disables the compressor when freezing temperatures are encountered. This paper reviews the causes of evaporator icing and traditional systems to protect against icing as well as tests to validate the icing protection system. A wind tunnel icing protection test is described that validates the effectiveness of the icing protection by forcing the system through the “clutch cycling transition boundary.” The proposed test requires less time to perform and is more conclusive than previous tests. Test result data is given.
Technical Paper

Analysis of the Progression of Rainwater Film Over the Bonnet of a Road Vehicle

2005-04-11
2005-01-1513
A significant route for water ingress into passenger cars is through the Heating, Ventilating, and Air-Conditioning (HVAC) system. The penetration of rainwater through the HVAC unit and the subsequent rise in moisture levels within the passenger compartment directly affect the provision of thermal comfort to the cabin occupants. It is speculated that up to 80% of water ingress into the cowl or engine bay is from water film movement over the bonnet of the car, and only the remaining 20% is from direct rain impact from above. Using a full-scale Climatic Wind Tunnel (CWT) facility, which incorporates accurate rain distribution modeling, it has been possible to study the movement of rainwater film over the exterior surface of the vehicle to ascertain the flow distribution of the film moving into the engine bay, into the cowl, advancing up and over the windscreen and shed to the sides and front of the vehicle.
X