Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

2007-04-16
2007-01-0616
Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
Technical Paper

An Investigation of EGR Treatment on the Emission and Operating Characteristics of Modern Diesel Engines

2007-04-16
2007-01-1083
Tests are conducted to improve the use of exhaust gas recirculation on a single cylinder diesel engine with EGR stream treatment techniques that include intake heating, combustible substance oxidation, catalytic fuel reforming, and partial bypass-flow control. In parallel with the empirical work, theoretical modeling analyses are performed to investigate the effectiveness of the reforming process and the combined effects on the overall system efficiency. The research is aimed at stabilizing and expanding the limits of heavy EGR during steady and transient operations so that the individual limiting conditions of EGR can be better identified. Additionally, the heavy EGR is applied to enable in-cylinder low temperature combustion. The effectiveness of EGR treatment on engine emission and operating characteristics are therefore reported.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
X