Refine Your Search

Topic

Author

Search Results

Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Safety Related Testing and Results of Polycarbonate and Tempered Glass Non-Windshield Glazing Applications

1998-02-23
980863
This paper presents results from a series of tests that address safety related issues concerning vehicle glazing. These issues include occupant containment, head impact injury, neck injuries, fracture modes, and laceration. Component-level and full vehicle crash tests of standard and polycarbonate non-windshield glazing were conducted. The tests were conducted as part of a study to demonstrate that there is no decrease in the safety benefits offered by polycarbonate glazing when compared to current glazing. Readers of this paper will gain a broader understanding of the tests that are typically conducted for glazing evaluation from a safety perspective, as well as gain insight into the meaning of the results.
Technical Paper

Rollover Sensor Signature Test Development

2007-04-16
2007-01-0375
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper

Prototype Design and Testing of a Thermoplastic Steering Wheel Armature

2007-04-16
2007-01-1218
Basic automotive steering wheel armature design has been largely unchanged for years. A cast aluminum or magnesium armature is typically used to provide stiffness and strength with an overmolded polyurethane giving shape and occupant protection. A prototype steering wheel armature made from a unique recyclable thermoplastic eliminates the casting while meeting the same stiffness, impact, and performance criteria needed for the automotive market. It also opens new avenues for styling differentiation and flexibility. Prototype parts, manufacturing, and testing results will be covered.
Technical Paper

A General Discussion on Interior Design Alternatives in Response to FMVSS 201U-Upper Interior Head Impact Protection

1998-09-29
982348
The implementation of Federal Motor Vehicle Safety Standard (FMVSS) 201U-Upper Interior Head Impact Protection[1] will require significant changes to vehicle interiors. The response from the safety industry to this regulation has resulted in a number of new and innovative design solutions. These countermeasures include integrated trim components, foam, and other types of deformable structures. The challenge to the safety industry is to design the components to provide higher levels of head impact protection without sacrificing other important considerations such as vision, appearance, durability, and cost. This paper will present background information on FMVSS 201U testing, discuss various countermeasure concepts currently being implemented, and suggest design alternatives relative to specific regions in a given vehicle.
Technical Paper

Airbag Sensor System Evaluation Methods

1998-09-29
982357
This paper presents testing methodologies used for the evaluation of airbag sensor systems. The methods are geared towards the analysis of airbag deployment/non-deployment situations through the use of harsh and abusive tests that include both driving and stationary impact conditions. Readers of the paper will gain a broad understanding of the testing options that are available to develop suitable airbag sensor systems and deployment algorithms. The methodologies presented in this paper address only the issue of preventing deployment in certain environments. The vehicle conditions are critical when developing the threshold of the deployment algorithm. The Rough Road and Abuse tests are an important part of developing this algorithm. With airbag deployment threshold levels being such an important issue in the safety field, the test methods used to simulate real world conditions become an integral aspect to overall airbag development.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

Modeling Methodology of Tearseams for Invisible PSIR Systems

2001-03-05
2001-01-0314
Automotive interiors are undergoing rapid transformation with the introduction of invisible PSIR integral systems. This styling trend requires continuous class A surface for the Instrument Panel (IP) and introduces complexities in the design and analysis of PSIR integral systems. The most important criterion for airbag doors is that it must open as intended, at the tearseam, within the deployment temperature range and without fragmentation. Consequently it is imperative that in analytical simulations, the finite element model of the tearseam is accurate. The accuracy of the model is governed by (a) optimal level of refinement, (b) surface geometry representation and (c) material model. This paper discusses modeling methodology for tearseams with respect to mesh refinement and the effect of geometry.
Technical Paper

Predicting Impact Performance of Painted Thermoplastic Exterior Body Panels

2001-03-05
2001-01-0445
Automotive exterior paint systems can significantly affect the impact performance of thermoplastic body panels. To utilize the benefits of predictive engineering as a tool to assist in the design and development of thermoplastic body panels, thermoplastic body panel materials have been characterized with typical automotive paint systems for use for finite element modeling and analysis. Paint systems used for exterior body panels can vary from rigid to more flexible, depending on the vehicle manufacturer's specifications. Likewise, thermoplastics for body panels vary in mechanical properties, primarily depending on the heat performance requirements of the application. To understand the effects of paint systems on impact performance of thermoplastic body panels, two different paint systems, representing “rigid” and “more flexible,” were evaluated on two body panel grades of thermoplastics with different mechanical properties.
Technical Paper

A 100 G Frontal Crash Sled Test System

2004-03-08
2004-01-0473
This paper describes the development of a new sled system that can address many safety-related issues pertaining to the racing industry. The system was designed to re-create acceleration and velocity levels similar to levels evident in race car crashes. The sled utilizes equipment typically used in passenger car crash research with the primary change to a specially designed lightweight carriage. This paper will overview the system and the types of crash events that can be simulated. Readers of this paper will gain a much broader understanding of accelerator sled testing and the issues related to the simulation of high speed crashes using physical testing.
Technical Paper

Proposed Upgrade to Federal Motor Vehicle Safety Standard (FMVSS) 202 - Head Restraints: Methodology and Equipment

2004-03-08
2004-01-0739
Federal Motor Vehicle Safety Standard (FMVSS) 202 - Head Restraints [1] sets forth criteria pertaining to the dimensional and safety requirements for front outboard head restraints in passenger vehicles, light multipurpose vehicles, trucks, and buses. On January 4, 2001, the National Highway Traffic Safety Administration (NHTSA) published a Notice for Proposed Rulemaking (NPRM) for FMVSS 202, wherein referred to as FMVSS 202A [2]. The proposed requirements, which apply to all outboard head restraints, provide higher strength and dimensional limits, introduce new criteria for backset and adjustment retention, and partially harmonize with existing European regulations. This paper will discuss upgraded testing equipment and methodologies with respect to head restraints and provide test data from a developmental test project.
Technical Paper

Vehicle Seating-An Overview of How Advanced Airbag Regulations Will Effect Non-FMVSS Test Procedures

2001-03-05
2001-01-0116
Recently, the National Highway Traffic Safety Administration (NHTSA) revised the Final Rule for Federal Motor Vehicle Safety Standard (FMVSS 208) - Occupant Crash Protection [1]. This rule, which will first take effect during the 2004 model year, specifies a number of new compliance test requirements that advanced frontal protection airbags will have to meet. The goal of the new standard is to reduce the risk of serious airbag induced injuries, particularly for small women and young children, and provide improved frontal crash protection for all occupants. In response to this new rule, vehicles in the future will have electronic sensors located in the seat and other advanced sensor systems. These sensors will be designed to measure critical data, such as occupant weight and size, which will be used to control the airbag. The reliability of the sensors through the entire life of a vehicle is critical to its overall safety characteristics.
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Bumper Systems Designed for Both Pedestrian Protection and FMVSS Requirements: Part Design and Testing

2004-01-08
2004-01-1610
This paper describes a bumper system designed to meet the current FMVSS (Federal Motor Vehicle Safety Standard) and ECE42 legislation as well as the European Enhanced Vehicle Safety Committee (EEVC) requirements for lower leg pedestrian impact protection [1] (The EEVC was founded in 1970 in response to the US Department of Transportation's initiative for an international program on Experimental Safety Vehicles. The EEVC steering committee, consisting of representatives from several European Nations, initiates research work in a number of automotive working areas. These research tasks are carried out by a number of specialist Working Groups who operate for over a period of several years giving advice to the Steering Committee who then, in collaboration with other governmental bodies, recommends future courses of action designed to lead to improved safety in vehicles).
Technical Paper

Ncap-Field Relevance of the Metrics

2001-06-04
2001-06-0170
By design, frontal New Car Assessment Program (NCAP) tests focus on a narrow portion of the spectrum of field crash events. A simple, high level parsing of towaway crashes from NHTSA's National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) files shows that only a small fraction of occupants (but a somewhat larger portion of their harm as measured by ISS) find themselves in crash circumstances remotely similar to NCAP crash conditions. Looking only at seat location, area of damage, direction of force, distribution of damage, and estimated delta-V filters significantly restricts the relevance of NCAP even before critical factors like belt use and vehicle crash partner are considered. Given the limited scope of frontal NCAP it should not be surprising that it has limited usefulness in discriminating among various vehicles' overall performance in the field.
Technical Paper

2003 Chevrolet Kodiak and GMC TopKick Airbag Sensing System Development

2002-11-18
2002-01-3101
Airbag systems have been part of passenger car and truck programs since the mid-1980's. However, systems designed for medium and heavy duty truck applications are relatively new. The release of airbag systems for medium duty truck has provided some unique challenges, especially for the airbag sensing systems. Because of the many commercial applications within the medium duty market, the diversity of the sensing environments must be considered when designing and calibrating the airbag sensing system. The 2003 Chevrolet Kodiak and GMC TopKick airbag sensing development included significant work, not only on the development of airbag deployment events but also non-deployment events – events which do not require the airbag to deploy. This paper describes the process used to develop the airbag sensing system deployment events and non-deployment event used in the airbag sensing system calibration.
Technical Paper

Bumper Systems Designed for Both Pedestrian Protection and FMVSS Requirements

2003-01-03
2003-01-0214
This paper describes a bumper system design that satisfies both current FMVSS legislation as well as the European Enhanced Vehicle Safety Committee (EEVC) requirements for lower leg pedestrian impact protection. The dual performance solution is achieved through a combination of material properties and design. Using Computer Aided Engineering (CAE) modeling, the performance of an injection molded energy absorber (EA) was analyzed for pedestrian protection requirements of knee bending angle, knee shear displacement, and tibia acceleration, 4Kph pendulum and barrier impacts (ECE42, FMVSS), and 8Kph pendulum and barrier impacts (CMVSS, FMVSS). The results demonstrate how an injection molded EA using polycarbonate/polybutyelene terephthalate (PC/PBT) resin (Figure 1) can meet both FMVSS and pedestrian safety requirements and can do so within a packaging space typical of today's vehicle styling.
X