Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Advanced Urea SCR System Study with a Light Duty Diesel Vehicle

2012-04-16
2012-01-0371
U.S. federal vehicle emission standards effective in 2007 require tight control of NOx and hydrocarbon emissions. For light-duty vehicles, the current standard of Tier 2 Bin 5 is about 0.07 g/mi NOx and 0.09 g/mi NMOG (non-methane organic gases) at 120,000 mi. However, the proposed future standard is 0.03 g/mi for NMOG + NOx (~SULEV30) at 150,000 mi. There is a significant improvement needed in catalyst system efficiencies for diesel vehicles to achieve the future standard, mainly during cold start. In this study, a less than 6000 lbs diesel truck equipped with an advanced urea Selective Catalytic Reduction (SCR) system was used to pursue lower tailpipe emissions with an emphasis on vehicle calibration and catalyst package. The calibration was tuned by optimizing exhaust gas recirculation (EGR) fuel injection and cold start strategy to generate desirable engine-out emissions balanced with reasonable temperatures.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Stoichiometric Air-Fuel Ratio Control Analysis

1981-02-01
810274
A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.
Journal Article

HC Traps for Gasoline and Ethanol Applications

2013-04-08
2013-01-1297
In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation.
X