Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Journal Article

A Transfer-Matrix-Based Approach to Predicting Acoustic Properties of a Layered System in a General, Efficient, and Stable Way

2023-05-08
2023-01-1052
Layered materials are one of the most commonly used acoustical treatments in the automotive industry, and have gained increased attention, especially owing to the popularity of electric vehicles. Here, a method to model and couple layered systems with various layer types (i.e., poro-elastic layers, solid-elastic layers, stiff panels, and fluid layers) is derived that makes it possible to stably predict their acoustical properties. In contrast with most existing methods, in which an equation system is constructed for the whole structure, the present method involves only the topmost layer and its boundary conditions at two interfaces at a time, which are further simplified into an equivalent interface. As a result, for a multi-layered system, the proposed method splits a complicated system into several smaller systems and so becomes computationally less expensive.
X