Refine Your Search

Topic

Author

Search Results

Journal Article

Calculation of Heating Value for Gasoline Containing Ethanol

2010-05-05
2010-01-1517
Ethanol for use in automotive fuels can be made from renewable feedstocks, which contributes to its increased use in recent years. There are many differences in physical and chemical properties between ethanol and petrochemicals refined from fossil oil. One of the differences is its energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb, the test is time-consuming and expensive. It is generally satisfactory and more convenient to estimate that property from other commonly-measured fuel properties. Several standardized empirical methods have been developed in the past for estimating the energy content of hydrocarbon fuels such as gasoline, diesel fuel, and jet fuel.
Journal Article

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

2014-09-30
2014-01-2375
This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P10HH hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Understanding the Charging Flexibility of Shared Automated Electric Vehicle Fleets

2020-04-14
2020-01-0941
The combined anticipated trends of vehicle sharing (ride-hailing), automated control, and powertrain electrification are poised to disrupt the current paradigm of predominately owner-driven gasoline vehicles with low levels of utilization. Shared, automated, electric vehicle (SAEV) fleets offer the potential for lower cost and emissions and have garnered significant interest among the research community. While promising, unmanaged operation of these fleets may lead to unintended negative consequences. One potentially unintended consequence is a high quantity of SAEVs charging during peak demand hours on the electric grid, potentially increasing the required generation capacity. This research explores the flexibility associated with charging loads demanded by SAEV fleets in response to servicing personal mobility travel demands. Travel demand is synthesized in four major United States metropolitan areas: Detroit, MI; Austin, TX; Washington, DC; and Miami, FL.
Journal Article

Investigating Malfunction Indicator Light Illumination Due to Increased Oxygenate Use in Gasoline

2012-11-15
2012-01-2305
The Energy Independence and Security Act of 2007 requires the U.S. to use 36 billion gallons of renewable fuel per year by 2022. Domestic ethanol production has increased steadily in recent years, growing from less than 5 billion gallons per year (bgpy) in 2006 to over 13 bgpy in 2010. While there is interest in developing non-oxygenated renewable fuels for use in conventional vehicles as well as interest in expanding flex-fuel vehicle (FFV) production for increased E85 use, there remains concern that EISA compliance will require further use of oxygenated biofuels in conventional vehicles. The Environmental Protection Agency (EPA) recently granted partial approval to a waiver allowing the use of E15 in 2001 and newer light-duty vehicles.
Journal Article

Gasoline Anti-Knock Index Effects on Vehicle Net Power at High Altitude

2017-03-28
2017-01-0801
Automakers are designing smaller displacement engines with higher power densities to improve vehicle fuel economy, while continuing to meet customer expectations for power and drivability. The specific power produced by the spark-ignited engine is constrained by knock and fuel octane. Whereas the lowest octane rating is 87 AKI (antiknock index) for regular gasoline at most service stations throughout the U.S., 85 AKI fuel is widely available at higher altitudes especially in the mountain west states. The objective of this study was to explore the effect of gasoline octane rating on the net power produced by modern light duty vehicles at high altitude (1660 m elevation). A chassis dynamometer test procedure was developed to measure absorbed wheel power at transient and stabilized full power operation. Five vehicles were tested using 85 and 87 AKI fuels.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Analysis of Ethanol Fuel Blends

2013-11-20
2013-01-9071
In the last three years, three quality surveys on ethanol-blended fuels intended for use in flex-fuel vehicles have been published. Two of these surveys cover Flex-Fuel quality, and the third encompasses the quality of mid-level ethanol blends (MLEBs) from blender pumps. The purpose of these surveys was to report on the quality of the fuels and provide a snapshot in time of fuel quality. This study examines the larger picture portrayed by these surveys and looks for broader trends in fuel quality. The analysis found that compliance with vapor pressure specification limits for Flex Fuel improved from 40% to 66% in Class 1, from 31% to 43% in Class 2, and from 12% to 30% in Class 3 between 2008 and 2010. Failures on other critical properties, such as acidity, pHe, water, and inorganic chloride were less than 6% in these studies. The 2010 Flex Fuel samples readily met the ethanol content specification, with 88%, 92%, and 95% compliance for Classes 1, 2, and 3, respectively.
Journal Article

Heat of Vaporization Measurements for Ethanol Blends Up To 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines

2015-04-14
2015-01-0763
The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline. Performance properties and composition of the blendstocks and blends were measured, including research octane number (RON), motor octane number (MON), net heating value, density, distillation curve, and vapor pressure. RON increases upon blending ethanol but with diminishing returns above about 30 vol%. Above 30% to 40% ethanol the curves flatten and converge at a RON of about 103 to 105, even for the much lower RON NG blendstock. Octane sensitivity (S = RON - MON) also increases upon ethanol blending. Gasoline blendstocks with nearly identical S can show significantly different sensitivities when blended with ethanol.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach

2007-07-09
2007-01-3255
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station.
Technical Paper

Magnesium Powertrain Mount Brackets: New Application of Material Being used in this Sub-System for Vehicle Mass Reduction

2007-04-16
2007-01-1031
The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
Technical Paper

Characterization of Methanol and Ethanol Sprays from Different DI Injectors by Using Mie-scattering and Laser Induced Fluorescence at Potential Engine Cold-start Conditions

2010-04-12
2010-01-0602
A laser sheet imaging system with Mie-scattering and Laser Induced Fluorescence (LIF) was used to investigate the spray characteristics of gasoline, methanol and ethanol fuels. A range of conditions found in today's gasoline engines were investigated including that observed during engine cold-start. Both a swirl injector and a multi-hole fuel injector were examined for each of the three fuels. A combination of the second harmonic (532 nm) and the fourth harmonic (266 nm) was generated simultaneously using a Nd:YAG laser system to illuminate the spray. The Mie-scattering technique was used to characterize the liquid phase of the spray while the LIF technique was used to detect a combination of liquid and vapor phases. While gasoline naturally fluoresced, the dopant TEA was added to the methanol and ethanol fuels as a fuel tracer. The Mie-scattering and LIF signals were captured simultaneously using a CCD camera along with an image doubler.
Technical Paper

The Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-out and Tailpipe Particulate Matter Emissions

2010-10-25
2010-01-2125
In this work, the influences of ethanol and iso-butanol blended with gasoline on engine-out and post three-way catalyst (TWC) particle size distribution and number concentration were studied using a General Motors (GM) 2.0L turbocharged spark ignition direct injection (SIDI) engine. The engine was operated using the production engine control unit (ECU) with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. U.S. federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at 10 selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm.
Technical Paper

Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

2003-06-23
2003-01-2253
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficient personal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warmup phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including ¼ power in 30 s, and ½ power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands.
Technical Paper

Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach

2002-06-03
2002-01-1957
How much fuel does vehicle air conditioning actually use? This study attempts to answer that question to determine the national and state-by-state fuel use impact seen by using air conditioning in light duty gasoline vehicles. The study used data from US cities, representative of averages over the past 30 years, whose temperature, incident radiation, and humidity varied through time of day and day of year. National surveys estimated when people drive their vehicles during the day and throughout the year. A simple thermal comfort model based on Fanger's heat balance equations determined the percentage of time that a driver would use the air conditioning based on the premise that if a person were dissatisfied with the thermal environment, they would turn on the air conditioning. Vehicle simulations for typical US cars and trucks determined the fuel economy reduction seen with AC use.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Weathering of Black Plastics for Automotive Exteriors

2003-03-03
2003-01-1191
Ten mold-in-color black polymers were evaluated for exterior weathering in an attempt to improve the specifications for exterior mold-in-color plastics to meet five year durability for a 95th percentile sunbelt customer. Four different weathering methods were utilized including Arizona exposure, Florida exposure, and Xenon arc exposures per the GMNA and the GM Europe methods. Colorfastness, gloss retention and other material property changes due to weathering were measured and analyzed against two GM durability standards. For the appearance attributes, correlations between actual exposure and accelerated exposure were attempted. Test results before and after polishing were also analyzed. Finally, in addition to comparing the performance of the ten polymers, the four weathering methods are compared and discussed with recommendations for the preferred testing regimen.
Technical Paper

Central Carolina Vehicle Particulate Emissions Study

2003-03-03
2003-01-0299
In-use, light-duty vehicles were recruited in Cary, North Carolina for emissions testing on a transportable dynamometer in 1999. Two hundred forty-eight vehicles were tested in as received condition using the IM240 driving cycle. The study was conducted in two phases, a summer and winter phase, with half of the vehicles recruited during each phase. Regulated emissions, PM10, carbonaceous PM, aldehydes and ketones were measured for every test. PM2.5, individual volatile hydrocarbons, polycyclic aromatic hydrocarbons, sterane and hopane emissions were measured from a subset of the vehicles. Average light-duty gasoline PM10 emission rates increased from 6.5 mg/mi for 1993-97 vehicles to 53.8 mg/mi for the pre-1985 vehicles. The recruited fleet average, hot-stabilized IM240 PM10 emission rate for gasoline vehicles was 19.0 mg/mi.
Technical Paper

Forming Limit Curves for the AA5083 Alloy under Quick Plastic Forming Conditions

2011-04-12
2011-01-0235
Forming Limit Curves (FLCs) were developed for the 5083 aluminum alloy at conditions simulating high temperature processes such as superplastic and quick plastic forming. Sheet samples were formed at 450 °C and at a constant strain rate of 5x10-3 s-1, by free bulging into a set of elliptical die inserts with different aspect ratios. Friction-independent formability diagrams, which distinguish between the safe and unsafe deformation zones, were constructed. Although the formability diagrams were confined to the biaxial strain region (right side quadrant of an FLD), the elliptical die insert methodology provides formability maps under conditions where traditional mechanical stretching techniques are limited.
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

2016-10-25
2016-36-0360
The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
X