Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Determination of Used Crankcase Oil Condition by Capillary Electrophoresis Analysis of Extracted Organic Acids

2009-11-02
2009-01-2689
Organic acid degradation products and other anions in engine oil were speciated by capillary electrophoresis (CE) and liquid chromatography-mass spectrometry (LCMS) with electrospray ionization. The sample preparation procedure involved selectively extracting the acids and other water soluble salts into 0.05M aqueous potassium hydroxide. Samples of engine-aged mineral oil and synthetic engine oil contained formic acid, acetic acid, and complex mixtures of fatty acid degradation products. CE analysis of formic acid, acetic acid and selected fatty acids is proposed as a new chemical analysis method for evaluating the condition of engine oil and for studying the effects of high temperature-high load (HTHL) oxidation. Because the overall pattern of CE peaks in the electropherogram changes with oil age or condition, CE-fingerprint (i.e., pattern recognition) techniques may also be useful for evaluating an aged oil's condition or remaining service life.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Technical Paper

An Engineering Approach to Predict Fracture and Tearing

2011-04-12
2011-01-0002
An engineering approach was developed to extract the failure plastic strain, thinning failure strain, and major in plane failure strain for finite element simulation applications. This approach takes into account the failure strain dependency on the element size when element deletion scheme is invoked in the simulation of material fracture. Both localized necking fracture and tensile shear fracture can be predicted when appropriate elements and material models are used in LS-DYNA simulations. This leads to a more accurate prediction of fracture and tearing in the finite element simulation of vehicle structure and crash loading conditions.
Technical Paper

Prevention of Premature Failure of Electric Motors in Proximity to Lubricants

2011-04-12
2011-01-0207
Small electric DC (Direct Current) motors used to actuate various mechanisms in vehicles have failed prematurely when exposed to some formulations of lubricants, which leached into the motor and caused shorting. The subject study explored this failure mechanism in detail as evidenced in vehicle power door lock actuators. Experiments were conducted through the application of various types of lubricants to motors in varying ways to re-create the failure mode experienced by the authors, and to determine an optimized selection of lubricant for maximized cycle life, robust to inherent component manufacturing process variation in both the amount and location of lubrication placement. The detailed data, photographs and conclusions which resulted were summarized. The electric motor failure mode experienced in the example situation was first explained and illustrated with detailed photography.
Technical Paper

Determination of Molding Parameter Effects on the Physical Properties of a Carbon Powder Filled, Impact Modified Acetal Copolymer

2011-04-12
2011-01-0250
Polyacetals have high strength, modulus, and chemical resistance with good dimensional stability. Because of these properties, they are used in a number of automotive applications. The injection molding process used for the molding of these components is complex and requires the adjustment of multiple process parameters to produce parts. Typically, physical tests are used to confirm that tensile strength is achieved in processing. A study was undertaken with an impact modified carbon powder filled, acetal copolymer to determine the effect of variation in process parameters on other material properties in addition to tensile strength. These material properties were measured dry as-molded and after exposure to heat and to a test fluid. It was determined that in the case of this specific polymer, the barrel temperature, and to a lesser extent the cooling time during processing, affected the strain at break.
Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Technical Paper

Effects of Gage Section Geometry on Tensile Material Properties by Digital Image Correlation

2012-04-16
2012-01-0184
Accurate material property data in both the elastic and plastic ranges of deformation is essential for accurate material representation in finite element simulations of vehicle systems. Variation of post formed material properties across a part are often of interest in different types of analyses, such as metal forming or fatigue life, for example. Depending on a part's shape it is not always possible to cut standard size tensile test specimens from all areas of interest across the part. Smaller size specimens with curved or tapered gage section may have to be used to promote strain localization and fracture at or near the gage center. This paper presents comparison of quasi-static tensile properties determined using two specimen gage section geometries, straight and tapered. Specifically, the following questions are addressed. How do the engineering strains computed from two-dimensional strain fields obtained by DIC compare to strains measured during standard tensile tests?
Technical Paper

Seal Testing in Aerated Lubricants

2011-04-12
2011-01-1209
Typical seal immersion testing in lubricants does not aerate the lubricant as typically seen during normal operation of a transmission or axle. This paper will discuss a new test apparatus that introduces air into transmission fluids and gear oils during seal immersion testing. The seal materials selected for the testing are from current vehicle applications from several different material families. The test results compare the standard properties: change in tensile strength, elongation, hardness, and volume swell. Several tests were completed to investigate and refine the new testing method for seal compatibility testing with transmission fluids and gear oils. Initial results from the first data sets indicate that lubricant aeration helps improve test repeatability. In addition to aeration, the test results explore appropriate fluid immersion temperature for repeatability and appropriate test duration.
Technical Paper

Effects of Base Stocks on Lubricant Aeration

2011-04-12
2011-01-1210
Aeration properties of lubricants is an increasing concern as the design of powertrain components, specifically transmissions, continue to become more compact leading to smaller sumps and higher pressure requirements. Although good design practices are the most important factors in mitigating the aeration level of the fluid, the fluid properties themselves are also a contributing factor. This paper investigates the aeration properties of specific base oils commonly used to formulate modern transmission fluids using the General Motors Company Aeration Bench Test found in GMN10060. The test matrix includes thirteen different fluids representing a cross-section of base oil types, manufacturers, and viscosity grades. Per the procedure found in GMN10060, the bench test measures the aeration time, de-aeration time, and percent maximum aeration of the fluid at three temperatures, 60°C, 90°C, and 120°C. In the end, the results are compared with four commercially available transmission fluids.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
X