Refine Your Search

Topic

Author

Search Results

Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

An Economic and Environmental Life Cycle Evaluation of 100% Regrind ABS for Automotive Parts

1998-11-30
982196
The use of regrind acrylonitrile-butadiene-styrene (ABS) for automotive parts and components results in two types of financial savings. The first is the shared monetary savings between General Motors and the molder for the difference in the virgin resin price versus price of the ABS regrind. The second is a societal energy savings seen in the life cycle of virgin ABS versus reground ABS. An added benefit is the preservation of natural resources used to produce virgin ABS.
Technical Paper

Improvement on Cylinder-to-Cylinder Variation Using a Cylinder Balancing Control Strategy in Gasoline HCCI Engines

2010-04-12
2010-01-0848
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI combustion, traditional HCCI engines show some degree of sensitivity to in-cylinder thermal conditions; thus higher cylinder-to-cylinder variation was observed especially at low load and high load operating conditions due to different injector characteristics, different amount of reforming as well as non-uniform EGR distribution. To address these issues, a cylinder balancing control strategy was developed for a multi-cylinder engine. In particular, the cylinder balancing control strategy balances CA50 and AF ratio at high load and low load conditions, respectively. Combustion noise was significantly reduced at high load while combustion stability was improved at low load with the cylinder balancing control.
Technical Paper

Electro-Hydraulic Fully Flexible Valve Actuation System for Engine Test Cell

2010-04-12
2010-01-1200
Fully Flexible Valve Actuation (FFVA) systems provide maximum flexibility to adjust lift profiles of engine intake and exhaust valves. A research grade electro-hydraulic servo valve based FFVA system was designed to be used with an engine in a test cell to precisely follow desired lift profiles. Repetitive control was chosen as the control strategy. Crank angle instead of time is used to trigger execution to ensure repeatability. A single control is used for different engine speeds even though the period for one revolution changes with engine speeds. The paper also discusses lift profile extension, instantaneous lift profile switching capability and built-in safety features.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

Advances in Complex Eigenvalue Analysis for Brake Noise

2001-04-30
2001-01-1603
Brake squeal has been analyzed by finite elements for some time. Among several methods, complex eigenvalue analysis is proving useful in the design process. It requires hardware verification and it falls into a simulation process. However, it is fast and it can provide guidance for resolving engineering problems. There are successes as well as frustrations in implementing this analysis tool. Its capability, robustness and reliability are closely examined in many companies. Generally, the low frequency squealing mechanism is a rotor axial direction mode that couples the pads, rotor, and other components; while higher frequency squeal mainly exhibits a rotor tangential mode. Design modifications such as selection of rotor design, insulator, chamfer, and lining materials are aimed specifically to cure these noise-generating mechanisms. In GM, complex eigenvalue analysis is used for brake noise analysis and noise reduction. Finite element models are validated with component modal testing.
Technical Paper

General Motors High Performance 4.3L V6 Engine

1992-02-01
920676
FIGURE 1 The 200 HP high performance 4.3L Vortec V6 engine has been developed to satisfy the need for a fuel efficient performance powerplant in the General Motors small truck platforms. Marketing requirements included strong low and mid range torque, relatively high specific power, smoothness and noise comparable to the best competitive six cylinder engines, excellent driveability, and a new technology image. Maintaining the 4.3L engine record of high reliability and customer satisfaction was an absolute requirement. Fuel economy and exhaust emission performance had to meet expected customer and legislated requirements in the mid 1990's.
Technical Paper

The Automobile: Unwanted Technology - The Later Years Part I: Cars and Crises 1960-1990 Part II: The Dawning of Automotive Electronics

1992-02-01
920845
Several factors have influenced the size and design of domestic passenger cars over the past 30 years. Of most significance has been the influx of imported cars, initially from Europe, later from Japan. Interspersed within the fabric of this influx have been two energy crises and several recessions, and the onset of safety, emission, and energy regulations. These factors have led to various responses by domestic manufacturers as indicated by the types of products and vehicle systems that they have introduced during this period. This paper chronicles both the events as well as the responses.
Technical Paper

Selection and Development of a Particulate Trap System for a Light Duty Diesel Engine

1992-02-01
920142
In order to meet progressively stringent regulations on particulate emission from diesel engines, GM has developed and tested a variety of trap oxidizer systems over the years. A particulate trap system for a light duty diesel engine has been selected and developed based on this experience, with particular emphasis on production feasibility. The system components have been designed and developed in collaboration with potential suppliers, to the extent possible. The technical performance of this system has been demonstrated by successful system durability testing in the test cell and vehicle experience in computer controlled automatic operation mode. Although the system shows promise, its production readiness will require more development and extensive vehicle validation under all operating conditions.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Central Port Fuel Injection

1992-02-01
920295
The primary objective of Central Port Fuel Injection is to be a low cost multi-point fuel injection system with the additional attributes of compactness, packaging flexibility, and reliability. Performance of this fuel system closely resembles that of a simultaneous multi-point fuel injection system in flow control, dynamic range, cylinder-to-cylinder distribution, idle quality, transient response, and emissions. The system provides significantly improved performance in the areas of hot fuel handling, cold startability, vacuum and voltage sensitivity and system noise. This performance comes at a significant cost savings and greater packaging and targeting flexibility over a conventional multi-point fuel injection system.
Technical Paper

Development of a PEM Fuel Cell System for Vehicular Application

1992-08-01
921541
Allison Gas Turbine Division of General Motors is performing the first phase of a multiphase development project aimed at demonstrating an electric vehicle based on a proton exchange membrane (PEM) fuel cell. This work is sponsored by the Office of Transportation Technologies of the U.S. Department of Energy (DoE) through the DoE's Chicago Field Office (Contract No. DE-AC02-90CH10435). This work complements major efforts under way to produce electric vehicles for reducing pollution in key urban areas. Battery powered vehicles will initially satisfy niche markets where limited range vehicles can meet commuter needs. The PEM fuel cell/battery hybrid using methanol as fuel potentially offers an extremely attractive option to increasing the range, payload, and/or performance of battery powered vehicles.
Technical Paper

Evaluation of a High Speed, High Resolution Gas Chromatography Instrument for Exhaust Hydrocarbon Speciation

2005-04-11
2005-01-0683
The ozone forming potential (OFP) and specific reactivity (SR) of tailpipe exhaust are among the factors that determine the environmental impact of a motor vehicle. OFP and SR measurements require a lengthy determination of about 190 non-methane hydrocarbon species. A rapid gas chromatography (GC) instrument has been constructed to separate both the light (C2 - C4) and the midrange (C5 - C12) hydrocarbons in less than 10 minutes. The limit of detection is about 0.002 parts per million carbon (ppmC). Thirty exhaust samples from natural gas vehicles (NGV's) were analyzed to compare the rapid GC method with the standard GC method, which required 40-minute analyses on two different instruments. In general, evaluation of the commercial prototype from Separation Systems, Inc., indicates that a high speed, high resolution gas chromatograph can meet the need for fast, efficient exhaust hydrocarbon speciation.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

A Sampling System for the Measurement of PreCatalyst Emissions from Vehicles Operating Under Transient Conditions

1993-03-01
930141
A proportional sampler for vehicle feedgas and tailpipe emissions has been developed that extracts a small, constant fraction of the total exhaust flow during rapid transient changes in engine speed. Heated sampling lines are used to extract samples either before or after the catalytic converter. Instantaneous exhaust mass flow is measured by subtracting the CVS dilution air volume from the total CVS volume. This parameter is used to maintain a constant dilution ratio and proportional sample. The exhaust sample is diluted with high-purity air or nitrogen and is delivered into Tedlar sample bags. These transient test cycle weighted feedgas samples can be collected for subsequent analysis of hydrocarbons and oxygenated hydrocarbon species. This “mini-diluter” offers significant advantages over the conventional CVS system. The concentration of the samples are higher than those collected from the current CVS system because the dilution ratio can be optimized depending on the fuel.
Technical Paper

Aerodynamic Development of a Successful NASCAR Winston Cup Race Car

1994-12-01
942521
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1989 through 1994 Chevrolet Lumina Winston Cup race car, and demonstrates the continuous improvements successfully used to respond to rule changes and competition. The development will be documented from construction of a prototype race car, through one third scale model testing, and the detail development required to continually improve performance and meet changing body rules which stringently limit body modifications. Despite these limitations, track and wind tunnel testing of development vehicles contributed to driver's and manufacturer's championships in the first racing season. The continuous improvement process, which includes ongoing wind tunnel and track tests, has resulted in improvement or at least maintenance of drag coefficient along with lift coefficient reduction of up to 0.050 each year.
Technical Paper

Investigation of Fluid Flow Through a Vane Pump Flow Control Valve

1995-04-01
951113
The recent development of a new vane-type pump for power steering applications involved paying special attention to the fluid flow dynamics within the pump casing, especially in the flow control or supercharge region, where excess pump fluid flow is diverted to the intake region. Durability testing of initial designs revealed the presence of cavitation damage to the pump casing in the supercharging region. Subsequent Computational Fluid Dynamics (CFD) analyses as well as experimental Flow Visualization studies aided in resolving the cavitation-damage problem. The purpose of this paper is to describe the processes used in the CFD analyses and flow visualization studies. A two-dimensional (2D) convergence study was conducted to determine the CFD meshing requirements across the small orifice at the intersection of the flow-control valve and the supercharge port. An iterative procedure was employed to determine the operating position of the flow-control valve.
X