Refine Your Search

Topic

Search Results

Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

Diesel Emission Control in Review

2009-04-20
2009-01-0121
This summary covers representative developments from 2008 in diesel regulations, engine technology, and NOx, particulate matter (PM), and hydrocarbon (HC) control. Europe is finalizing the Euro VI heavy-duty (HD) regulations for 2013 with the intent of technologically harmonizing with the US. A new particle number standard will be adopted. California is considering tightening the light-duty fleet average to US Tier 2 Bin 2 levels, and CO2 mandates are emerging in Europe for LD, and in the US for all vehicles. LD engine technology is focused on downsizing to deliver lower CO2 emissions, enabled by advances in boost and EGR (exhaust gas recirculation). Emerging concepts are shown for attaining Bin 2 emission levels. HD engines will make deNOx systems optional for even the tightest NOx standards, but deNOx systems enable much lower fuel consumption levels and will likely be used. NOx control is centered on SCR (selective catalytic reduction) for diverse applications.
Journal Article

Diesel Emission Control in Review

2008-04-14
2008-01-0069
This summary covers the developments from 2007 in diesel regulations, engine technology, and NOx and PM control. Regulatory developments are now focused on Europe, where heavy-duty regulations have been proposed for 2013. The regulations are similar in technology needs to US2010. Also, the European Commission proposed the first CO2 emission limits of 130 g/km, which are nearly at parity to the Japanese fuel economy standards. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is centered on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation and system optimization. LNT (lean NOx traps) durability is quantified, and performance enhanced with a sulfur trap.
Journal Article

Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters

2008-04-14
2008-01-0328
Diesel particulate filters are expected to be used on most passenger car applications designed to meet coming European emission standards, EU5 and EU6. Similar expectations hold for systems designed to meet US Tier 2 Bin 5 standards. Among the various products oxide filter materials, such as cordierite and aluminum titanate, are gaining growing interest due to their unique properties. Besides the intrinsic robustness of the filter products a well designed operating strategy is required for the successful use of filters. The operating strategy is comprised of two elements: the soot estimation and the regeneration strategy. In this paper the second element is discussed in detail by means of theoretical considerations as well as dedicated engine bench experiments. The impact the key operating variables, soot load, exhaust mass flow, oxygen content and temperature, have on the conditions inside the filter are discussed.
Journal Article

Vehicular Emissions in Review

2013-04-08
2013-01-0538
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2012. First, the paper covers the key regulatory developments in the field, including finalized criteria pollutant tightening in California; and in Europe, the development of real-world driving emissions (RDE) standards. The US finalized LD (light-duty) greenhouse gas (GHG) regulation for 2017-25. The paper then gives a brief, high-level overview of key developments in LD and HD engine technology, covering both gasoline and diesel. Marked improvements in engine efficiency are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are just starting to demonstrate 50% brake thermal efficiency. NOx control technologies are then summarized, including SCR (selective catalytic reduction) with ammonia, and hydrocarbon-based approaches.
Journal Article

Impact of Ceramic Substrate Web Thickness on Emission Light-Off, Pressure Drop, and Strength

2008-04-14
2008-01-0808
The effect of web thickness on emission performance, pressure drop, and mechanical properties was investigated for a series of catalyzed ceramic monolith substrates having cell densities of 900, 600 and 400 cpsi. As expected, thinner webs provide better catalyst light off performance and lower pressure drop, but mechanical strength generally decreases as web thickness is reduced. Good correlations were found between emission performance and geometric parameters based on bare and coated parts. An improved method for estimating the effects of cell density and web thickness on bare substrate strength is described, and the effect of porosity on material strength is also examined. New mechanical strength correlations for ceramic honeycombs are presented. The availability of a range of ceramic product geometries provides options for gasoline exhaust emission design and optimization, especially where increased levels of performance are desired.
Technical Paper

Advanced Mounting System for Light Duty Diesel Filter

2007-04-16
2007-01-0471
This paper employs a systematic approach to packaging design and testing of a system and its components in order to determine the long term durability of light duty diesel filters. This effort has utilized a relatively new aluminum titanate filter technology as well as an advanced support mat technology engineered to provide superior holding force at lower temperatures while maintaining its high temperature performance. Together, these two new technologies form a system that addresses the unique operating conditions of diesel engines. Key physical properties of both the filter and the mat are demonstrated through laboratory testing. The system behavior is characterized by various laboratory techniques and validation procedures.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

An Economic and Environmental Life Cycle Evaluation of 100% Regrind ABS for Automotive Parts

1998-11-30
982196
The use of regrind acrylonitrile-butadiene-styrene (ABS) for automotive parts and components results in two types of financial savings. The first is the shared monetary savings between General Motors and the molder for the difference in the virgin resin price versus price of the ABS regrind. The second is a societal energy savings seen in the life cycle of virgin ABS versus reground ABS. An added benefit is the preservation of natural resources used to produce virgin ABS.
Technical Paper

General Motors Small Front Wheel Drive Six speed Automatic Transmission Family

2010-04-12
2010-01-0857
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer.
Technical Paper

Improvement on Cylinder-to-Cylinder Variation Using a Cylinder Balancing Control Strategy in Gasoline HCCI Engines

2010-04-12
2010-01-0848
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI combustion, traditional HCCI engines show some degree of sensitivity to in-cylinder thermal conditions; thus higher cylinder-to-cylinder variation was observed especially at low load and high load operating conditions due to different injector characteristics, different amount of reforming as well as non-uniform EGR distribution. To address these issues, a cylinder balancing control strategy was developed for a multi-cylinder engine. In particular, the cylinder balancing control strategy balances CA50 and AF ratio at high load and low load conditions, respectively. Combustion noise was significantly reduced at high load while combustion stability was improved at low load with the cylinder balancing control.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Technical Paper

Electro-Hydraulic Fully Flexible Valve Actuation System for Engine Test Cell

2010-04-12
2010-01-1200
Fully Flexible Valve Actuation (FFVA) systems provide maximum flexibility to adjust lift profiles of engine intake and exhaust valves. A research grade electro-hydraulic servo valve based FFVA system was designed to be used with an engine in a test cell to precisely follow desired lift profiles. Repetitive control was chosen as the control strategy. Crank angle instead of time is used to trigger execution to ensure repeatability. A single control is used for different engine speeds even though the period for one revolution changes with engine speeds. The paper also discusses lift profile extension, instantaneous lift profile switching capability and built-in safety features.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

Diesel Emission Control Technology 2003 in Review

2004-03-08
2004-01-0070
This paper will review the field of diesel emission control with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author reviews general technology approaches for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Regarding NOx control, SCR (selective catalytic reduction) and LNT (lean NOx traps) progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies demonstrate that high-efficiency systems are within reach in all highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

A CFD Study of Diesel Substrate Channels with Differing Wall Geometries

2004-03-08
2004-01-0152
This paper describes efforts to use computational fluid dynamics (CFD) to provide some general insights on how wall-based protuberances affect the flow and thermal fields in substrates exposed to typical diesel engine exhaust conditions. The channel geometries examined included both square and round bumps as well as an extreme tortuous path design. Three different 2d CFD laminar-flow analyses were performed: (1) a transient fluid analysis to identify the existence of any vortex shedding in the vicinity of the bumps, (2) a steady-state fluid analysis to examine the velocity and pressure fields as well as momentum transport characteristics, and (3) a thermal analysis to examine the heat transport characteristics. The model predicts no vortex shedding behind the bumps for the conditions and geometries examined, confirming the validity of a steady state approach and eliminating this possible transport mechanism.
Technical Paper

Diesel Engine Exhaust Thermal and Vibration Mapping

2004-03-08
2004-01-0590
The characterization of the thermal and vibration environment of the exhaust systems of three modern day diesel engines, with displacements ranging from 1.9 liter to 12.7 liter, was carried out to support the development of exhaust after treatment components. Tri-axial accelerometer and in pipe thermocouple measurements were recorded at several locations along the exhaust systems during vehicle acceleration and steady driving conditions up to 70 mph. The vehicles were loaded to various gross weight configurations to provide a wide range of engine load conditions. Narrow band and octave band vibration power spectral densities are presented and conclusions are drawn as to the spectral content of the exhaust vibration environment and its distribution along the exhaust system. Temperature time histories during vehicle acceleration runs are likewise presented to indicate expected peak exhaust temperatures.
Technical Paper

Erosion Mechanisms and Performance of Cellular Ceramic Substrates

2003-10-27
2003-01-3071
High emission performance standards and precious metals costs have pushed the catalytic substrate toward high cell density and thin wall, such as the 600/4, 600/3 and 900/2 products. Due to the inherently lower mechanical strength of these products, coupled with a shift from underbody to close-coupled placement, a concern was expressed that the severe thermal and mechanical conditions may cause structural damage to the substrate, which in turn could impact the catalyst performance. One source of reduced performance during use is the loss of catalyst due to erosion. A previous study1 indicated that the existence of particulate in an air-stream could cause substrate erosion. However, it was not clear if other factors could contribute to or accelerate the erosion process. In order to address this question, experiments were performed to examine the influence of high velocity flow, temperature, impingement angle, particulate characteristics, and coating effect on erosion.
Technical Paper

Diesel Particulate Filter Operational Characterization

2004-03-08
2004-01-0958
Wall-flow filter technology has been used for many years to remove particulate emissions from a select number of diesel engine exhaust systems. Significant implementation of diesel particulate filters will require the definition of regeneration strategies that permit the filters to be regularly and durably purged of accumulated non-volatile particulates. This paper will examine the laboratory-bench characterization of filter responses to the wide variety of input conditions to which they may be exposed in practice. The lab-bench filter characterization will be done as a function of generic independent variables such as flow rate, inlet temperature, oxygen content and soot loading. The testing will be conducted on uncatalyzed filters for this preliminary study. The characterization approach will examine such dependent variables as completeness of regeneration and maximum exotherm temperatures.
X