Refine Your Search

Topic

Author

Search Results

Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

GREEN-MAC-LCCP®: A Tool for Assessing Life Cycle Greenhouse Emissions of Alternative Refrigerants

2008-04-14
2008-01-0828
The GREEN-MAC-LCCP© [Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance] model described here is an evolution of a previous GM model that assesses the lifecycle energy and GHG emissions associated with the production, use and disposal of alternative refrigerants and MAC components. This new model reduces the complexity of inputs and provides a consistent output analysis. This model includes Microsoft Excel Visual Basic© code to automatically make the calculations once inputs are complete.
Journal Article

Design and Development of a Switching Roller Finger Follower for Discrete Variable Valve Lift in Gasoline Engine Applications

2012-09-10
2012-01-1639
Global environmental and economic concerns regarding increasing fuel consumption and greenhouse gas emission are driving changes to legislative regulations and consumer demand. As regulations become more stringent, advanced engine technologies must be developed and implemented to realize desired benefits. Discrete variable valve lift technology is a targeted means to achieve improved fuel economy in gasoline engines. By limiting intake air flow with an engine valve, as opposed to standard throttling, road-load pumping losses are reduced resulting in improved fuel economy. This paper focuses on the design and development of a switching roller finger follower system which enables two mode discrete variable valve lift on end pivot roller finger follower valvetrains. The system configuration presented includes a four-cylinder passenger car engine with an electro-hydraulic oil control valve, dual feed hydraulic lash adjuster, and switching roller finger follower.
Technical Paper

Design of a Dual Wall Air Gap Exhaust Manifold

1998-02-23
980045
The new regulations to reduce emissions have resulted in the development of new techniques to maintain or enhance competitive performance. A requirement for the manifold is to help meet the reduction in cold start emissions, particularly during the transient conditions from start to 100 seconds following the Federal Test Procedures for vehicle emissions. Finite element computer models were developed to predict inner and outer wall temperatures, and to determine structural soundness. Tests were performed to assure that noise levels were minimized. Dynamometer lab and field tests were performed to verify that the manifold would meet the design requirements. From the results of these tests and analyses, modifications were made to the weld and manufacturing techniques to improve product life and reduce noise. Dual wall manifolds have proven durability to meet high exhaust gas temperatures up to 1650°F (900°C), while meeting the performance, noise, and weight reduction goals.
Technical Paper

Tank-to-Wheels Preliminary Assessment of Advanced Powertrain and Alternative Fuel Vehicles for China

2007-04-16
2007-01-1609
Well-to-Wheels analyses are important tools that provide a rigorous examination and quantify the environmental burdens associated with fuel production and fuel consumption during the vehicle use phase. Such assessments integrate the results obtained from the Well-to-Tank (WtT) and the Tank-to-Wheels (TtW) analysis components. The purpose of this study is to provide a preliminary Tank-to-Wheels assessment of the benefits associated with the introduction of alternative powertrains and fuels in the Chinese market by the year 2015 as compared to the results obtained with conventional internal combustion engine vehicles (ICEVs). An emphasis is given on the vehicles powered by those fuels that have the potential to play a major role in the Chinese auto-sector, such as: M10, M85, E10, E85, Di-methyl Ether (DME) and Coal-to-Liquids (CTL). An important conclusion of this report is that hybridization reduces fuel consumption in all propulsion systems.
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Predicting Running Vehicle Exhaust Back Pressure in a Laboratory Using Air Flowing at Room Temperature and Spreadsheet Calculations

2009-04-20
2009-01-1154
In today’s highly competitive automotive environment people are always looking to develop processes that are fast, efficient, and effective. Moving testing from expensive prototype vehicles into the laboratory is an approach being implemented for many different vehicle subsystems. Specifically a process has recently been developed at General Motors that predicts exhaust back pressure performance for a running vehicle using laboratory testing and spreadsheet calculations. This paper describes the laboratory facility and procedure, the theory behind the calculations, and the correlation between vehicle test and laboratory based results. It also comments on the benefits of the process with respect to reduction in design iterations, quicker availability of results, and money savings.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Exhaust Backpressure Estimation for an Internal Combustion Engine with a Variable Geometry Turbo Charger

2009-04-20
2009-01-0732
Exhaust gas recirculation (EGR) is one of the key approaches applied to reduce emissions for an internal combustion engine. Recirculating a desired amount of EGR requires accurately estimating EGR mass flow. This can be calculated either from the gas flow equation of an orifice, or from the difference between charge air mass flow and fresh air mass flow. Both calculations need engine exhaust pressure as an input variable. This paper presents a method to estimate exhaust pressure for a variable geometry turbo charged diesel engine. The method is accurate and simple to fit production ECU application, therefore, saves cost of using a physical sensor.
Technical Paper

Optimization of the Stratified-Charge Regime of the Reverse-Tumble Wall-Controlled Gasoline Direct-Injection Engine

2004-03-08
2004-01-0037
An optimum combustion chamber was designed for a reverse-tumble wall-controlled gasoline direct-injection engine by systematically optimizing each design element of the combustion system. The optimization was based on fuel-economy, hydrocarbon, combustion-stability and smoke measurements at a 2000 rev/min test-point representation of road-load operating condition. The combustion-chamber design parameters that were optimized in this study included: piston-bowl depth, piston-bowl opening width, piston-bowl-volume ratio, exhaust-side squish height, bowl-lip draft angle, distance between spark-plug electrode and piston-bowl lip, spark-plug-electrode length, and injector spray-cone angle. No attempt was made to optimize the gross engine parameters such as bore and stroke or the intake system, since this study focused on optimizing a reverse-tumble wall-controlled gasoline direct-injection variant of an existing port-fueled injection engine.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Full-Load Operation

2004-03-08
2004-01-0034
Full-load operation of a small-displacement spark-ignition direct-injection (SIDI) engine was thoroughly investigated by means of computational analysis and engine measurements. The performance is affected by many different factors, which can be grouped as those pertaining to volumetric efficiency, to mixing and stratification, and to system issues, respectively. Volumetric efficiency is affected by flow losses, tuning and charge cooling. Charge cooling due to spray vaporization is often touted as the most significant benefit of direct-injection on full-load performance. However, if wall wetting occurs, this benefit may be completely negated or even reversed. The fuel-air mixing is strongly affected by the injection timing and characteristics at lower engine speeds, while at higher engine speeds the intake flow dominates the transport of fuel particles and resultant vapor distribution. A higher injector flow rate enhances mixing especially at higher engine speeds.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Roll-Down Process Development for Transmission Garage Shift Quality

2001-04-30
2001-01-1500
A roll down methodology has been developed to predict the driver's seat track fore-aft acceleration response using measured half shaft torque time histories and an analytically predicted vehicle sensitivity function suitable for transverse front wheel drive powertrains. The predicted vehicle sensitivity function (a frequency response function) relates the transmission torque applied to the drive axles to the seat track fore-aft acceleration. An experimental procedure was developed to measure the in-situ vehicle sensitivity function. The experimental data was used to correlate the analytical model. The testing results have shown that in the frequency range of the “garage shift” that the vehicle body can be represented as a rigid body. A Nastran model utilizing a rigid body representation of the body and powertrain is used to predict the vehicle response to the torque transient.
Technical Paper

Assessment of a Vehicle Concept Finite-Element Model for Predicting Structural Vibration

2001-04-30
2001-01-1402
A vehicle concept finite-element model is experimentally assessed for predicting structural vibration to 50 Hz. The vehicle concept model represents the body structure with a coarse mesh of plate and beam elements, while the suspension and powertrain are modeled with a coarse mesh of rigid-links, beams, and lumped mass, damping, and stiffness elements. Comparisons are made between the predicted and measured frequency-response-functions (FRFs) and modes of (a) the body-in-white, (b) the trimmed body, and (c) the full vehicle. For the full vehicle, the comparisons are with a comprehensive set of measured FRFs from 63 tests of nominally identical vehicles that demonstrate the vehicle-to-vehicle variability of the measured FRF response.
Technical Paper

Evaluation of Improved Bag Mini-Diluter System for Low Level Emissions Measurements

2002-03-04
2002-01-0047
General Motors Corporation has installed its first production Bag Mini-Diluter Emission Test Site. This site is capable of conducting chassis dynamometer tests in either traditional CFV mode, or BMD mode, and a combination mode in which both technologies sample simultaneously. This paper discusses ambient interferent (Hydrocarbon and humidity) contamination issues which impact data resolution and measurement accuracy as emission standards are lowered. Solutions are recommended which compensate for these effects. This document examines new technologies required for accurate BMD measurements, and presents data obtained from running the site in the dual sampling mode utilizing a four-cylinder PZEV vehicle.
Technical Paper

Evaluation of New Bag Sampling Materials for Low Level Emissions Measurements

2002-03-04
2002-01-0051
Copolymer materials have been used for the collection of vehicle exhaust gas samples since the inception of regulatory standards. Some of these copolymers contain N,N-dimethylacetamide (DMA), which is added to improve the physical properties of the copolymer and eliminate manufacturing problems. DMA is highly soluble in water, and in effect is rinsed from the emission bag surface by humid exhaust gas samples. This study shows that DMA can thus incorrectly add to test vehicle overall hydrocarbon emissions. The DMA contribution can be significant for lower level emission vehicles. This study introduces a new bag material, KYNAR®, which significantly reduces this interference.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
X