Refine Your Search

Topic

Search Results

Journal Article

Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China

2017-03-28
2017-01-1297
This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Model Predictive Control of Turbocharged Gasoline Engines for Mass Production

2018-04-03
2018-01-0875
This paper describes the design of a multivariable, constrained Model Predictive Control (MPC) system for torque tracking in turbocharged gasoline engines scheduled for production by General Motors starting in calendar year 2018. The control system has been conceived and co-developed by General Motors and ODYS. The control approach consists of a set of linear MPC controllers scheduled in real time based on engine operating conditions. For each MPC controller, a linear model is obtained by system identification with data collected from engines. The control system coordinates throttle, wastegate, intake and exhaust cams in real time to track a desired engine torque profile, based on measurements and estimates of engine torque and intake manifold pressure.
Technical Paper

A System of Systems Approach to Automotive Challenges

2018-04-03
2018-01-0752
The automotive industry is facing many significant challenges that go far beyond the design and manufacturing of automobile products. Connected, autonomous and electric vehicles, smart cities, urbanization and the car sharing economy all present challenges in a fast-changing environment which the automotive industry must adapt to. Cars no longer are just standalone systems, but have become constituent systems (CS) in larger System of Systems (SoS) context. This is reflected in the emergence of several acronyms such as vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) expressions. System of Systems are defined systems of interest whose elements (constituent systems) are managerially and operationally independent systems. This interoperating and/or integrated collection of constituent systems usually produce results unachievable by the individual systems alone, for example the use of car batteries as virtual power plants.
Technical Paper

Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

2018-04-03
2018-01-0358
Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work.
Technical Paper

Applications of Hardware-in-the-Loop Simulation in Automotive Embedded Systems

2020-04-14
2020-01-1289
Hardware-in-the-loop (HiL) simulation is an advanced technique for development and testing of complex real-time embedded systems. This technique has greatly developed in the last decades and has been more and more used in the automotive industry for algorithm and software development, hardware validation, safety validation, and fault investigation activities. Plant simulation model executes in HiL simulator to provide a virtual vehicle that interacts in an open-loop or closed-loop fashion with the embedded system that is under test. Compared to in-vehicle testing, HiL simulation provides benefits of low cost, high availability, high flexibility, repeatability, and test automation capability. HiL simulation reduces the risk caused by control failure, which is especially important for self-driving control system development and testing. The HiL simulation system is more application specific.
Technical Paper

Evaluation of V2V Reception Cadence- A New Metric for System Level Performance Analysis

2019-01-16
2019-01-0102
Vehicle to Everything (V2X) communication is a prominent solution for active safety collision avoidance and for providing autonomous vehicles Non-Line of Sight (NLOS) capabilities. For safety purposes, it is essential the V2X technology would support communication between all road users, e.g., Vehicles (V2V), pedestrians (V2P) and road infrastructure (V2I). Hence, the efficiency of a V2V communication solution should be evaluated through system level performance. In addition, the examined performance metrics need to reflect safety related properties. Metrics as Packet Reception Ratio (PRR) and transmission latencies, which are commonly used to assess V2X system’s functionality, aren’t enough since reception latencies are overlooked. The latter is crucial in ensuring messages would reach their destination on time to avoid hazardous incidents. The reception cadence may be much lower than this of the transmission due to various phenomenon (e.g. channel congestion).
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Journal Article

Application of Brake System Failed State Performance and Reliability Requirements to Brake System Architecting

2021-10-11
2021-01-1267
The modern braking system in the field today may be controlled by over a million lines of computer code and may feature several hundred moving parts. Although modern brake systems generally deliver performance, even with partial failures present in the system, that is well above regulatory minimums, they also have a level of complexity that extends well beyond what the authors of existing regulations had envisioned. Complexity in the braking system is poised for significant increases as advanced technologies such as self-driving vehicles are introduced, and as multiple systems are linked together to provide vehicle-level “features” to the driver such as deceleration (which can invoke service braking, regenerative braking, use of the parking brake, and engine braking). Rigorous safety-case analysis is critical to bring a new brake system concept to market but may be too tedious and rely on too many assumptions to be useful in the early architecting stages of new vehicle development.
Journal Article

Lean-Stratified Combustion System with Miller Cycle for Downsized Boosted Application - Part I

2021-04-06
2021-01-0458
Automotive manufacturers relentlessly explore engine technology combinations to achieve reduced fuel consumption under continued regulatory, societal and economic pressures. For example, technologies enabling advanced combustion modes, increased expansion to effective compression ratio, and reduced parasitics continue to be developed and integrated within conventional and hybrid propulsion strategies across the industry. A high-efficiency gasoline engine capable for use in conventional or hybrid electric vehicle platforms is highly desirable. This paper is the first to two papers describing the development of a combustion system combining lean-stratified combustion with Miller cycle for downsized boosted applications. The work was completed under a multi-year US DOE project. The goal was to define a light-duty engine package capable of achieving a 35% fuel economy improvement at US Tier 3 emission standards over a naturally aspirated stoichiometric baseline vehicle.
Journal Article

Lean-Stratified Combustion System with Miller Cycle for Downsized Boosted Application - Part 2

2021-04-06
2021-01-0457
Automotive manufacturers relentlessly explore engine technology combinations to achieve reduced fuel consumption under continued regulatory, societal and economic pressures. For example, technologies enabling advanced combustion modes, increased expansion to effective compression ratio and reduced parasitics continue to be developed and integrated within conventional and hybrid propulsion strategies across the industry. A high-efficiency gasoline engine capable for use in conventional or hybrid electric vehicle platforms is highly desirable. This paper is the second of two papers describing the multi-cylinder integration of a technology package combining lean-stratified combustion with Miller cycle for downsized boosted applications. The first paper describes the design, analysis and single-cylinder testing conducted to down-select the combustion system deployed to the multi-cylinder engine.
Technical Paper

Evaluation of Neat Methanol as Fuel for a Light-Duty Compression Ignition Engine

2023-08-28
2023-24-0047
Methanol is currently being evaluated as a promising alternative fuel for internal combustion engines, due to being attainable by carbon neutral or negative pathways (renewable energy and carbon capture technology). The low ignitability of methanol has made it attractive mostly as a fuel for spark ignition engines, however the low sooting properties of the fuel could potentially reduce the NOx-soot tradeoff present in compression ignition engines. In this work, using a 4-cylinder engine with compression ratio modified from 16:1 to 19:1, methanol combustion is evaluated under five operating conditions in terms of fuel consumption, criteria pollutants, CO2 emissions and engine efficiency in addition to the qualitative assessment of the combustion stability. It was found that combustion is stable at medium to high loads, with medium load NOx emissions levels at least 30% lower than the original diesel engine and comparable emissions at maximum load conditions.
Technical Paper

Intersection of Automotive and Satellite Connectivity: Use Cases and Exploration of a Hybrid Model

2021-03-02
2021-01-0017
Universal Connectivity in the vehicle is no longer a nice-to-have function, but a critical tool to support every other function of the car - infotainment, active safety, autonomous driving, diagnostics, driving comfort etc. Although CASE (Connectivity, Autonomous, Services, Electrification) is now a commonly accepted foundation of new technology, it should perhaps be more accurately described as “C + ASE”, since Connectivity is an important enabler for the other three. Typically, connectivity in a vehicle implies primarily cellular (terrestrial) communication along with several other wireless protocols such as WiFi, Bluetooth, NFC etc. In addition, emerging vehicular technologies such as autonomous driving would potentially require ubiquitous and highly reliable connectivity.
Journal Article

Evaluation of the Effect of Low-Carbon Fuel Blends’ Properties in a Light-Duty CI Engine

2022-08-30
2022-01-1092
De-fossilization is an increasingly important trend in the energy sector. In the transport sector the de-fossilization efforts have been centered in promoting the electrification of vehicles, nonetheless other pathways, like the use of carbon neutral or carbon-offsetting fuels under current vehicle fleets, are also worth considering. Low-carbon fuels (LCF) can be synthetized from sources that can take advantage of the carbon already present in the atmosphere (either by technologies like direct carbon capture or biological processes like photosynthesis in biofuels) and use energy from renewable sources for the necessary industrial processes. Although, LCFs can be compared to fossil fuels as energy sources for internal combustion engines, their composition is not the same and their properties can modify the engine combustion and emissions.
Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
X