Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Gasoline Distillation Effect on Vehicle Cold Start Driveability

2007-10-29
2007-01-4073
Cold start vehicle driveability performance depends on many parameters, one of which is the distillation character of the fuel. In the late 90's, a gasoline driveability index (DI) was developed for spark ignited combustion vehicles by a consortium of automotive and petroleum industry scientists based on correlation studies between controlled fuel quality matrices and vehicle performance under specific ambient conditions. The DI equation uses a weighted sum of gasoline distillation temperatures at the 10, 50 and 90 percent evaporation volumes, commonly called T10, T50 and T90. These three distillation volatility points are specified by the ASTM International D 4814 fuel specification and are seasonally adjusted. This paper studies the cold start driveability performance of Federal EPA Bin 5 and Bin 8 vehicles with respect to fuel distillation characteristics at temperatures other than T10, T50 and T90.
Technical Paper

Electric Machine Powertrain Integration for GM's Hybrid Full-Size Pickup Truck

2003-03-03
2003-01-0084
General Motors plans to introduce a hybrid version of its popular light-duty full-size (Silverado/Sierra) pickup truck. The program imperative of minimal vehicle architecture change drove a highly integrated powertrain solution. The hybrid powertrain features a novel, compact method of integrating an electric motor/generator between the largely unchanged engine and transmission, preserving their locations. From the targeted hybrid functions, power and energy specifications are derived. Specific design aspects and performance examples relating to the motor/generator packaging, torque converter, and overall vehicle driveabiltiy are discussed.
Technical Paper

Low-Speed Carbon Fiber Torque Capacity and Frictional Properties Test for ATFs

2004-10-25
2004-01-3026
Since the mid-1990's, original equipment manufacturers (OEMs) of automobiles have been implementing torque converter clutches in automatic transmissions with a continuous, controlled slip mode, in order to improve the fuel economy of their vehicles. These Continuously Slipping Torque Converter Clutches (CSTCCs) are prone to an undesirable phenomenon commonly called shudder. This phenomenon has been attributed to specific shapes or slopes in the friction coefficient versus sliding speed curve of the fluid/clutch interface. Here, a method is explained that was developed to be able to screen fluids for shudder tendency, both in fresh and used states. Also included is a description of the reason for implementing CSTCCs, some background on shudder, and supporting data showing how the test method can distinguish between fluids that have different shudder tendencies.
Journal Article

Testing & Validation Fuels in Vehicle Development

2008-06-23
2008-01-1764
Because of the wide array of commercial or market fuels in use today, all components, engines, and vehicles must be vigorously tested to confirm emissions performance, driveability and material compatibility. To support the requirements of the modern global vehicle engineer, various testing and validation fuels are used to represent quality that ranges from good to poor for fuel that are currently in the market or that will be introduced into the market in the future. Testing and validation fuels have been developed specifically for emissions compliance testing to meet new environmental regulations in different parts of the world, vehicle performance and reliability needs. Demand for new testing and validation fuels will continue to grow.
X