Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Life-Cycle Environmental Impact of Michelin Tweel® Tire for Passenger Vehicles

2011-04-12
2011-01-0093
Recently Michelin has been developing a new airless, integrated tire and wheel combination called the Tweel® tire. The Tweel tire aims at performance levels beyond those possible with conventional pneumatic technology because of its shear band design, added suspension, and potentially decreased rolling resistance. In this paper, we will focus on the environmental impact of the Tweel tire during its life-cycle from manufacturing, through use and disposal. Since the Tweel tire is currently still in the research phase and is not manufactured and used on a large scale, there are uncertainties with respect to end-of-life scenarios and rolling resistance estimates that will affect the LCA. Nevertheless, some preliminary conclusions of the Tweel tire's environmental performance in comparison to a conventional radial tire can be drawn.
Journal Article

New Attempts on Vehicle Suspension Systems Modeling and Its Application on Dynamical Load Analysis

2011-09-13
2011-01-2171
Suspension system dynamics can be obtained by various methods and vehicle design has gained great advantages over the dynamics analysis. By employing the new Udwadia-Kalaba equation, we endeavor some attempts on its application to dynamic modeling of vehicle suspension systems. The modeling approach first segments the suspension system into several component subsystems with kinematic constraints at the segment points released. The equations of motion of the unconstrained subsystems are thus easily obtained. Then by applying the second order constraints, the suspension system dynamics is then obtained. The equations are of closed-form. Having the equations obtained, we then show its application on dynamical load analysis. The solutions for the dynamical loads at interested hard points are obtained. We use the double wishbone suspension to show the systematic approach is easy handling.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

An Analytic Foundation for the Two-Mode Hybrid-Electric Powertrain with a Comparison to the Single-Mode Toyota Prius THS-II Powertrain

2009-04-20
2009-01-1321
General Motors has introduced a Two-Mode Transmission (2-MT) that provides significant improvements over the Toyota THS-II transmission. These improvements are achieved by employing additional planetaries with clutches and brakes to switch from a Mode-1 to Mode-2 as vehicle speed increases. In addition the 2-MT has four fixed-gear ratios that provide for a purely mechanical energy path from the IC engine to the driven wheels with the electric machines also able to provide additional driving torque. The purpose of this present paper is to extend the methodology in a previous paper [1] to include the 2-MT, thereby presenting an analytic foundation for its operation. The main contribution in this analysis is in the definition of dimensionless separation factors, defined in each mode that govern the power split between the parallel mechanical and electrical energy paths from the IC engine to the driven wheels.
Technical Paper

Active Anti-lock Brake System for Low Powered Vehicles Using Cable-Type Brakes

2010-04-12
2010-01-0076
This paper presents a study of the effects of anti-lock brakes on a vehicle with cable-type brakes with respect to stopping distance and vehicle control. While ABS is common on motorcycles and some hydraulic braking systems for mopeds, little research has been done on the use of anti-locks for low-powered vehicles using non-hydraulic brakes. A bicycle with cable-type brakes has been retrofitted with an active ABS. Experiments were carried out to compare the braking distance when the ABS was activated and deactivated. The study found that ABS did not sacrifice braking distance while improving vehicle control.
Technical Paper

Disc Brake Rotor Squeal Suppression Using Dither Control

2001-04-30
2001-01-1605
“Dither” control recently has been experimentally demonstrated to be an effective means to suppress and prevent rotor mode disc brake squeal. Dither control employs a control effort at a frequency higher, oftentimes significantly higher, than the disturbance to be controlled. The control actuator used for the work presented in this paper is a piezoelectric stack actuator located within the piston of a floating caliper brake. The actuator is driven in open-loop control at a frequency greater than the squeal frequency. This actuator configuration and drive signal produces a small fluctuation about the mean clamping force of the brake. The control exhibits a threshold behavior, where complete suppression of brake squeal is achieved once the control effort exceeds a threshold value. This paper examines the dependency of the threshold effort upon the frequency of the dither control signal, applied to the suppression of a 5.6 kHz rotor squeal mode.
Technical Paper

Experimental Investigation of Dither Control on Effective Braking Torque

2003-05-05
2003-01-1617
Automotive brake squeal is a problem that has plagued the automotive industry for years. Many noise cancellation techniques have been published. One such technique is the use of an external dither signal, that has been shown to suppress automotive disc brake squeal in experiments with a brake dynamometer, but the effect of this control on the system's braking torque has yet to be determined. By imposing a high frequency disturbance normally into the brake pad, squeal is suppressed. There are many studies that lead to the conclusion of a lower effective braking torque due to the high frequency dither control signal. Under the assumption of Hertzian contact stiffness it has been speculated that the loss in braking torque is due to a lowering of the average normal force. There has also been work done that proves that the application of a dither signal in the normal direction eliminates the ‘stick-slip’ oscillation that causes brake squeal by an effective decrease in the friction force.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Influence of Liquid Penetration Metrics on Diesel Spray Model Validation

2013-04-08
2013-01-1102
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Simulation of Traffic at a Four-Way Stop Intersection

1968-02-01
680170
While a number of important attempts have been made to describe characteristics of an intersection purely in mathematical terms, the most fruitful research from a practical standpoint has utilized simulation. This paper reports the results of research in which a four-way stop intersection was simulated on a digital computer. Inputs to the program were based on field studies at three intersections in metropolitan Atlanta using mathematical models and Monte Carlo techniques. Field data were taken with the aid of a spring wound Esterline-Angus 20-pen event recorder and time lapse movies. The simulation model was used to study the effectiveness of the four-way stop at various approach volumes and turning movement combinations. Results of experiments conducted on the simulation model are given by graphs showing the relationship between traffic volumes and average delay, per cent delayed, and average queue length.
Technical Paper

Hybrid Electric Vehicle Simulation and Evaluation for UT-HEV

2000-08-21
2000-01-3105
A hybrid electric vehicle (HEV) simulation has been developed for an electric-assist parallel configuration vehicle, at the University of Tennessee, Knoxville. The model was developed in MATLAB/SIMULINK using ADVISOR, a HEV simulation model developed by the National Renewable Energy Laboratory. The Neon simulation model implements a power control strategy using throttle position as the primary input. It incorporates other features of HEV power control such as battery regeneration and regenerative braking. A practical way of battery modeling is incorporated into this model. The model also simulates the vehicle operation as a pure electric vehicle (EV) or as a conventional vehicle (heat engine only). By using the Neon model, the performance of the vehicle has been analyzed using parametric analysis of the vehicle components and power control parameters. Recommendations are given for improving the design based on the simulation results.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

High-Performance Plug-In Hybrid Electric Vehicle Design Studies and Considerations

2015-04-14
2015-01-1158
This paper presents a detailed design study and associated considerations supporting the development of high-performance plug-in hybrid electric vehicles (PHEVs). Due to increasingly strict governmental regulations and increased consumer demand, automotive manufacturers have been tasked with the reduction of fuel consumption and greenhouse gas (GHG) emissions. PHEV powertrains can provide a needed balance in terms of fuel economy and vehicle performance by exploiting regenerative braking, pure electric vehicle operation, engine load-point shifting, and power-enhancing hybrid traction modes. Thus, properly designed PHEV powertrains can reduce fuel consumption while increasing vehicle utility and performance.
Technical Paper

Robust Trajectory Tracking Control for Intelligent Connected Vehicle Swarm System

2022-12-22
2022-01-7083
An intelligent connected vehicle (ICV) swarm system that includes N vehicles is considered. Based on the special properties of potential functions, a kinematic model describing the swarm performances is proposed, which allows all vehicles to enclose the tracking target and show both tracking and formation characteristics. Treating the performances as the desired constraints, the analytical form of constraint forces can be obtained inspired by the Udwadia-Kalaba approaches. A special approach of uncertainty decomposition to deal with uncertain interferences is proposed, and a switching-type robust control method is addressed for each vehicle agent in the swarm system. The features and validity of the addressed control are demonstrated in the numerical simulations.
X