Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Investigation of Turbulence Anisotropy of In-Cylinder Flows with Multi-Cycle Large Eddy Simulation

2021-04-06
2021-01-0416
In-cylinder flows in internal combustion engines are highly turbulent in nature. An important property of turbulence that plays a key role in mixture formation is anisotropy; it also influences ignition, combustion and emission formation. Thus, understanding the turbulence anisotropy of in-cylinder flows is critical. Since the most widely used two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models assume isotropic turbulence, they are not suitable for correctly capturing the anisotropic behavior of turbulence. However, large eddy simulation (LES) can account for the anisotropic behavior of turbulence. In this paper, the Reynolds stress tensor (RST) is analyzed to assess the predictive capability of RANS and LES with regard to turbulence anisotropy. The influence of mesh size on turbulence anisotropy is also looked into for multi-cycle LES.
Technical Paper

A Comparison of Virtual Sensors for Combustion Parameter Prediction of Gas Engines Based on Knock Sensor Signals

2023-04-11
2023-01-0434
Precise prediction of combustion parameters such as peak firing pressure (PFP) or crank angle of 50% burned mass fraction (MFB50) is essential for optimal engine control. These quantities are commonly determined from in-cylinder pressure sensor signals and are crucial to reach high efficiencies and low emissions. Highly accurate in-cylinder pressure sensors are only applied to test rig engines due to their high cost, limited durability and special installation conditions. Therefore, alternative approaches which employ virtual sensing based on signals from non-intrusive sensors retrieved from common knock sensors are of great interest. This paper presents a comprehensive comparison of selected approaches from literature, as well as adjusted or further developed methods to determine engine combustion parameters based on knock sensor signals. All methods are evaluated on three different engines and two different sensor positions.
X