Refine Your Search

Topic

Search Results

Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Journal Article

Future Engine Technology in Hand-Held Power Tools

2012-10-23
2012-32-0111
Today mankind is using highly sophisticated tools which contribute to maintain the standard of living. Nevertheless, these tools have to be further improved in the near future in order to protect health and environment as well as to ensure prosperity. Two-stroke engines equipped with a carburettor are the most used propulsion technology in hand-held power tools like chain saws and grass trimmers. The shortage of fossil resources and the necessary reduction of carbon dioxide emissions ask for improved engine efficiency. Concurrently, customers demand for an easy usage with high performance at all operating conditions, e.g. varying ambient temperature and pressure and different fuels. Moreover, world-wide emission limits will be even stricter in future. The improvement of the emission level, fuel consumption and customer benefits, while keeping the present advantages of two-stroke engines, like high specific power and simplicity, are the goals of this research work.
Journal Article

Different Speed Limiting Strategies for 50cm3 Two-Wheelers and Their Impacts on Exhaust Emissions and Fuel Economy

2011-11-08
2011-32-0587
Usually the power output of 50 cm₃ two wheelers is higher than necessary to reach the maximum permitted vehicle speed, making engine power restriction necessary. This publication deals with different power restriction strategies for four-stroke engines and their effect on exhaust emissions. Alternative power limitation strategies like EGR and leaning were investigated and compared with the common method of spark advance reduction to show the optimization potential for this certain engine operation conditions. From these tests, a substantial set of data showing the pros and cons in terms of emissions, combustion stability and fuel economy could be derived for each speed limiting technique.
Technical Paper

Exhaust Emission Reduction in Small Capacity Two- and Four-Stroke Engine Technologies

2006-11-13
2006-32-0091
State of the art technologies of 2 and 4 stroke engines have to fulfill severe future exhaust emission regulations, with special focus on the aspects of rising performance and low cost manufacturing, leading to an important challenge for the future. In special fields of applications (e.g. mopeds, hand held or off-road equipment) mainly engines with simple mixture preparation systems, partially without exhaust gas after treatment are used. The comparison of 2 and 4 stroke concepts equipped with different exhaust gas after treatment systems provides a decision support for applications in a broad field of small capacity engine classes.
Technical Paper

Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process

2010-09-28
2010-32-0030
This publication covers investigations on different 3D CFD models for the description of the spray wall and droplet-fluid interaction and the influence of these models on the mixture formation calculation results. Basic experimental investigations in a spray chamber and a flow tunnel as well as the corresponding 3D CFD simulation were conducted in order to clarify the prediction quality of the physical phenomena of spray-wall and spray-fluid interaction by the simulation. Influencing parameters such as the piston top temperature, piston bowl geometry, soot deposits on the piston top as well as flow velocity are investigated. This paper provides a direct link between the underlying simulation models of the mixture formation and actual real world combustion system development processes - underlining the importance of a close interaction of the model calibration and the development process.
Technical Paper

Investigations on Low Pressure Gasoline Direct Injection for a Standard GDI Combustion System

2010-09-28
2010-32-0094
In the course of the last few years a continuous increase of the injection pressure level of gasoline direct injection systems appeared. Today's systems use an injection pressure up to 200bar and the trend shows a further increase for the future. Although several benefits go along with the increased injection pressure, the disadvantages such as higher system costs and higher energy demand lead to the question of the lowest acceptable injection pressure level for low cost GDI combustion systems. Lowering injection pressure and costs could enable the technological upgrading from MPFI to GDI in smaller engine segments, which would lead to a reduction of CO2 emission. This publication covers the investigation of a low pressure GDI system (LPDI) with focus on small and low cost GDI engines. The influence of the injection pressure on the fuel consumption and emission behavior was investigated using a 1.4l series production engine.
Technical Paper

Possibilities and Limits of 1D CFD Simulation Methodology for the Layout of 2-Stroke GDI Combustion System

2010-09-28
2010-32-0017
The development process of 2-stroke engines is characterized by limited CFD investigations in combination with long-term development phases on the test bench with high prototype costs. To reduce the costs and to realize shorter development time together with a higher prediction quality of the engine potential, a higher implementation level of 1D and 3D simulation tools into the development process is necessary. This publication outlines the 1D simulation methods in the layout phase of GDI combustion processes of 2-stroke engine categories. By means of conceptual investigations, the demands, the potential and the limits of 1D CFD simulation methodology are defined. Using a comparison between 1D and 3D or 1D/3D coupled simulation methods the limits of solely 1D simulation are shown. For advanced simulation tasks with a higher demand for prediction quality, the entire engine is simulated in 1D, whereas special parts of the engine design are simulated in a 3D model.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Technical Paper

Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-01-01
2004-01-2105
An efficient and economic method to increase the performance of four stroke engines can be accomplished by utilizing the crankcase supercharging method. The lubrication of the movable parts in the crankcase by mixing the intake air with lubricant leads to a high oil consumption and disadvantages in the emission characteristics. This paper describes parts of a research project with the goal to develop a supercharged four–stroke engine with a closed loop lubrication system for the crank train and the cylinder head. The thermodynamic layout and the development of an oil separating system have been carried out with the help of simulation tools and development work on a flow test bench.
Technical Paper

A Demonstration of the Emission Behaviour of 50 cm3 Mopeds in Europe Including Unregulated Components and Particulate Matter

2011-11-08
2011-32-0572
The European emission legislation for two-wheeler vehicles driven by engines of ≤ 50 cm₃ is continuously developing. One of the most important issues in the near future will be the finalization of the European Commission's proposals for future steps in the emissions regulations as well as the verification of the impacts of current standards on the market. To have a basis for the discussion about these topics, the Association for Emissions Control by Catalyst (AECC) with the Institute for Internal Combustion Engines and Thermodynamics of Graz University of Technology (IVT) carried out an extensive test program to show the actual emission situation of state-of-the-art mopeds including mass and number of particulate matter as well as unregulated gaseous components. One of the main goals of these tests was to measure exhaust emissions without any modifications to the engines of standard production vehicles available on the European market.
Technical Paper

Low Cost Range Extender Technology for Hybrid Electric City Scooters

2012-10-23
2012-32-0083
Electric driving is generally limited to short distances in an emission sensible urban environment. In the present situation with high cost electric storage and long charging duration hybridization is the key to enable electric driving. In comparison to the passenger car segment, where numerous manufacturers are already producing and offering different hybrid configurations for their premium class models, the two wheeler sector is not yet affected by this trend. The main reason for the retarded implementation of this new hybrid technology is its high system costs, as they cannot be covered by a reasonable product price. Especially for the two wheeler class L1e, with a maximum speed of 45 km/h and an engine displacement of less than 50 cm₃, the cost factor is highly important and decisive for its market acceptance, because the majority of vehicles are still low-cost products equipped with simple carbureted 2-stroke engines.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

Artificial Neural Network Based Predictive Real Drive Emission and Fuel Economy Simulation of Motorcycles

2018-10-30
2018-32-0030
As the number of different engine and vehicle concepts for powered-two wheelers is very high and will even rise with hybridization, the simulation of emissions and fuel consumption is indispensable for further development towards more environmentally friendly mobility. In this work, an adaptive artificial neural network based predictive model for emission and fuel consumption simulation of motorcycles operated in real world conditions is presented. The model is developed in Matlab and Simulink and is integrated into a longitudinal vehicle dynamic simulation whereby it is possible to simulate various and not yet measured test cycles. Subsequently, it is possible to predict real drive emissions RDE and on-road fuel consumption by a minimum of previous measurement effort.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Control of a Low Cost Range Extender for L1e Class PHEV Two-Wheelers

2014-11-11
2014-32-0014
Due to the small number of two wheelers in Europe and their seasonal use, their contribution to the total emissions has been underestimated for a long time. With the implementation of the new emission regulation 168/2013 [3] for type approval coming into force 2016, the two wheeler sector is facing major changes. The need to fulfil more stringent emission limits and the high demand on the durability of after treatment systems result in an engine control system that is getting more complex and therewith more expensive. Especially the low cost two wheelers with small engine capacities will be affected by increasing costs which cannot be covered by the actual competitive product price. Therefore, new vehicle concepts have to be introduced on the market. A vehicle concept of a plug in hybrid electric city scooter with range extender as well as the range extender itself have already been published in SAE Papers 2011-32-0592 [1] and 2012-32-0083 [2].
Technical Paper

Air Cooled 50cm3 Scooter Euro 4 Application of the Two-Stroke LPDI Technology

2014-11-11
2014-32-0008
The Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, has presented several applications of its 2-stroke LPDI (low pressure direct injection) technology in the previous years ([1], [2], [3]). In order to improve the competitiveness of the 2-stroke LPDI technology, an air cooled 50cm3 scooter application has been developed. All previous applications have been liquid cooled. This air cooled application demonstrates the EURO 4 (2017) ability of the technology and shows that the 2S-LPDI technology can also be applied to low cost air-cooled engines. Hence, the complete scooter and moped fleet can be equipped with this technology in order to fulfil both the emission standards and the COP (conformity of production) requirements of Euro 4 emission stage. The paper presents the Euro 4 Scooter results and describes the efficient conversion process of the existing carburetor engine to the LPDI version.
Technical Paper

CFD Simulation Methodology for a Rotary Steam Expansion Piston Engine

2020-11-30
2020-32-2303
In industrial processes and other power generation processes, large amounts of waste heat are often lost to the environment. The conversion of this thermal energy into mechanical work promises a significant improvement in energy-utilization, the efficiency of the overall system and, consequently, cost-effectiveness. Therefore, the use of a Rankine-Cycle is a well-established technical process. A recent research project has investigated a novel expansion machine to be integrated into such an RC-process. Primarily, the present work deals with the fluid dynamic simulation of this expander, which is based on the principle of a rotary piston engine. The aim is to develop, analyze and optimize the process and the corresponding components. Hence, a CFD-model had to be built up, which should correspond as closely as possible to the physical engine.
Technical Paper

Considerations of Life Cycle Assessment and the Estimate of Carbon Footprint of Powertrains

2020-11-30
2020-32-2314
Legislative regulations and international agreements like the Paris Agreement have been prepared to enforce the effort to reduce the emission of greenhouse gases (GHGs). Greater environmental awareness among customers and introduction of strict environmental regulations have challenged designers to consider the environmental impact of products together with traditional design objectives in the early stages of product design. An important environmental impact factor is the carbon footprint of a product because carbon dioxide (CO2) emissions are a main cause of the global climate change. An early assessment of the product carbon footprint is beneficial because at this stage, design changes are still possible with little effort and at low cost. Actually, there is no detailed methodology for a CO2 impact estimation in the early design phases available and very few researches have been conducted for the special segment of small powertrains.
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
X