Refine Your Search

Topic

Author

Search Results

Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Journal Article

Advanced Heat Transfer and Underhood Airflow Investigation with Focus on Continuously Variable Transmission (CVT) of Snowmobiles

2017-06-28
2017-01-9180
The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
Journal Article

New and Innovative Combustion Systems for the H2-ICE: Compression Ignition and Combined Processes

2009-04-20
2009-01-1421
Hydrogen nowadays is considered one promising energy carrier for future mobility scenarios. Its application as a fuel in ICEs greatly benefits from Direct Injection (DI) strategies, which help to reduce the disadvantages of PFI systems such as air displacement effects, knocking, backfiring and low power density. In SI-engines one appropriate way to increase efficiency is the reduction of wall heat losses by jet- and/or wall-guided mixture formation systems. In theory, Compression Ignition (CI) systems employing a diffusion type of combustion allow for a significant raise in compression ratio and, thus, are likely to excel the SI concept in terms of efficiency. The following paper deals with results obtained from investigations on H2 Compression-Ignition (H2-CI) combustion systems by employing both thermodynamic research engines and 3D CFD simulation.
Technical Paper

Investigation of the Thermal Vehicle Brake Behavior During the Vehicle's Development Phase by Co-Simulation

2007-10-07
2007-01-3935
The mathematical thermal design of the vehicle brakes will lead to success if all influence parameters such as friction (fading effect), car geometry and inertia, brake amplifier, tire, convective heat flow, heat conductance and heat radiation are taken into consideration. In addition to a lot of design criteria, the thermal stability of the vehicle brake is becoming more and more important because of permanently increasing engine powers and weight of the vehicles. This requires both stable friction behavior in the contact zone between brake lining and brake disk and a sufficient transfer of the friction energy by means of convective heat flow. In order to accomplish these two tasks, considerable expense on a brake test bed and innumerable brake trials are necessary. It must be guarantied at the end of the brake design process that the vehicle reaches the required braking distance and the thermal stability of the brake, e.g. after several freeway braking sequences.
Technical Paper

Exhaust System Simulation of a 2-Cylinder 2-Stroke Engine Including Heat Transfer Effects

2010-09-28
2010-32-0035
The exhaust system design has an important influence on the charge mass and the composition of the charge inside the cylinder, due to its gas dynamic behavior. Therefore the exhaust system determines the characteristics of the indicated mean effective pressure as well. The knowledge of the heat transfer and the post-combustion process of fuel losses inside the exhaust system are important for the thermodynamic analysis of the working process. However, the simulation of the heat transfer over the exhaust pipe wall is time consuming, due to the demand for a transient simulation of many revolutions until a cyclic steady condition is reached. Therefore, the exhaust pipe wall temperature is set to constant in the conventional CFD simulation of 2-stroke engines. This paper covers the discussion of a simulation strategy for the exhaust system of a 2-cylinder 2-stroke engine until cyclic steady condition including the heat transfer over the exhaust pipe wall.
Technical Paper

Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-01-01
2004-01-2105
An efficient and economic method to increase the performance of four stroke engines can be accomplished by utilizing the crankcase supercharging method. The lubrication of the movable parts in the crankcase by mixing the intake air with lubricant leads to a high oil consumption and disadvantages in the emission characteristics. This paper describes parts of a research project with the goal to develop a supercharged four–stroke engine with a closed loop lubrication system for the crank train and the cylinder head. The thermodynamic layout and the development of an oil separating system have been carried out with the help of simulation tools and development work on a flow test bench.
Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Technical Paper

Systematic Experimental Creep Groan Characterization Using a Suspension and Brake Test Rig

2017-09-17
2017-01-2488
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
Technical Paper

Friction Force Measurement at Brake Discs

2011-05-17
2011-01-1576
Experimental researches on brake squeal have been performed since many years in order to get an insight into friction-excited vibrations and squeal triggering mechanisms. There are many different possibilities to analyse brake squeal. The different operating deflection shapes can be detected using e.g. laser vibrometer systems or acceleration sensors. Piezoelectric load cells can be used for the measurement of the normal contact force of the brake pad. The presented test setup measures not only the mean value of the friction force between brake pad and disc at a certain brake pressure, but also the superposed vibration of this force, which only occurs during a squeal event. Therefore the guide pins of the brake caliper are replaced by modified ones. The brake pads are held in position by these pins and the resulting force of the brake torque, hence the friction force, acts on these pins. The shape of the pins is optimized for measuring these forces.
Technical Paper

Mechanical Design of In-Wheel Motor Driven Vehicles with Torque-Vectoring

2011-10-04
2011-36-0132
Volatile oil prices and increased environmental sensitivity together with political concerns have moved the attention of governments, automobile manufacturers and customers to alternative power trains. From the actual point of view the most promising concepts for future passenger cars are based on the conversion of electrical into mechanical energy. In-wheel motors are an interesting concept towards vehicle electrification that provides also high potentials to improve vehicle dynamics and handling. Beside aspects concerning the electric system (e.g. motor type, energy storage, and control strategy), there are also some open questions related with the mechanical design of in-wheel motor driven vehicles that need to be solved before series production.
Technical Paper

Measuring System Approach to Analyze Brake Squeal Triggering Mechanism

2011-09-18
2011-01-2359
There are several different possibilities to analyze a squealing brake system. The present paper introduces a complex measuring system which is mounted on a complete vehicle axle at a test rig. This system was developed because the previously performed state-of-the-art tests did not allow any insights in the squeal triggering mechanisms. First of all, a frequency analysis was performed. Thereby the main vibrating parts and the directions of the oscillation could be determined during a squeal event. The second was a modal analysis of the vehicle axle, which was necessary to get further insights into the system as well as to verify an existing Finite Element Method model. Through these tests, however, it was not possible to get any insight into the contact area, and therefore it was impossible to determine the squeal triggering mechanism. Because of this limitation, special guide pins were developed, which are able to measure the vibrating friction force.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Experimental Investigation of Low-Frequency Vibration Patterns in Automotive Disk Brake Systems: Utilization Study for Modal Simulation Methods

2018-06-13
2018-01-1513
Increasing demands on automotive comfort as well as diminishing vehicle noise levels draw new attention towards low-frequency vibration and noise issues of disk brake systems such as creep groan and moan. In view of this problem, the experimental investigation of relevant phenomena is within the scope of this article. The related experiments concerning two different setups have been performed at a drum driven suspension and brake test rig. Both assemblies consisted of a front axle corner including all parts of the integrated brake system. In order to gain understanding of characteristic triggering mechanisms and fundamental subsystem interactions, and moreover, to verify the suitability of modal methods for simulative evaluations of creep groan or moan, specifically elaborated Operating Deflection Shape (ODS) techniques have been applied. Via analyses of four different creep groan emergences, global stick-slip cycles between disk and pads are revealed.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
Journal Article

Elaborate Measuring System for Sensitivity Analyses and In-Depth Investigations of a Squealing Brake System

2012-06-13
2012-01-1541
Brake squeal is an elusive problem which has been the subject of investigation for many decades, but there is still a lack of knowledge regarding the excitation mechanisms. New vehicle solutions, for instance the electrical vehicle, will have a lower general noise level. Thus, silent brake systems will gain in importance. To obtain such systems, in-depth investigations of the brake disc/pad contact are required. For these investigations a new sensor has been developed. The guide pins of the caliper are replaced by modified ones which measure the friction force. Additionally, eddy current sensors are installed for contact-free measurement of the pad movement. Furthermore, triaxial acceleration sensors are mounted in the disc vents. Thus, it is possible to evaluate the operational deflection shapes of the disc. Next, an extensive sensibility analysis is performed. Parameters such as environmental conditions, friction coefficient and many others are thereby changed.
X