Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Method to Predict the Vibration Transfer Function of Hydraulic Engine Mount on a Vehicle

2016-04-05
2016-01-1321
The CAE method to predict the vibration transfer function of the hydraulic engine mount on a vehicle with sufficient precision and calculation time without prototype cars was developed. The transfer function is given in the following steps. First, rubber deformation form under the power train weight loaded must be predicted. It’s obtained by using a reduction model of an engine mount, as a unit, which doesn’t have its fluid sealed inside, with the technique to get the static spring characteristics in a non-linear relationship. Second, Young’s modulus and structural damping coefficient for the deformed rubber must be given. As for these characteristics, ignoring the relations between these values and strain, the constant values are used. This considerably reduces computation time and model size. Next, the reduction model and the fluid model have must be combined to express actual product. In this step, coupled analysis for fluid and structure is used.
Technical Paper

Effect of Noise Factors on Seizure Limit Performance in Engine Main Bearings

2016-04-05
2016-01-0488
In order to determine the seizure limit of the main bearings of passenger vehicles under actual operating conditions, evaluations were conducted in environments containing noise factors (Various factors which designer cannot adjust and which make function vary were defined as noise factors in this paper.) [1,2] It was shown that noise factors have an effect on seizure limit performance in relation to performance under ideal test conditions (test conditions in which no noise is present). In relation to oil properties, the results showed that a reduction in viscosity as a result of dilution affected seizure limit performance. In relation to the shape of the sliding sections of the test shaft, seizure limit performance declined in a shaft in which the central section was swollen (“convex shaft” below).
X