Refine Your Search

Topic

Search Results

Video

Development of Hybrid System for Mid-Size Sedan

2011-11-07
Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.
Journal Article

Pt/Pd Bimetallic Catalyst with Improved Activity and Durability for Lean-Burn CNG Engines

2013-10-14
2013-01-2591
Compressed natural gas (CNG) has been regarded as an alternative fuel for current fossil fuels such as gasoline and diesel. Recently the increasing interest in shale gas is drawing more attention to CNG vehicles of which number is expected to increase. Exhaust gas from CNG engines with lean combustion contains relatively low nitrogen oxides and particulate matters compared to conventional fossil fuel based engines. However, high amount of unburned methane, which has much higher greenhouse warming potential than CO2, limits the wide use of CNG for many applications. Even though Pd-based catalysts have been popularly studied in order to convert methane, their activity and durability have not been sufficient for practical applications to aftertreatment of lean burn CNG engines and the formation of a new Pd containing.
Technical Paper

An Experimental and Computational Study of Flow Characteristics in Exhaust Manifold and CCC (Close-Coupled Catalyst)

1998-02-23
980128
A combined experimental and computational study of 3-D unsteady compressible flow in exhaust manifold and CCC system was performed to understand the flow characteristics and to improve the flow distribution of pulsating exhaust gases within monolith. An experimental study was carried out to measure the velocity distribution in production exhaust manifold and CCC under engine operating conditions using LDV (Laser Doppler Velocimetry) system. Velocity characteristics were measured at planes 25 mm away from the front surface of first monolith and between two monolithic bricks. To provide boundary conditions for the computational study, velocity fields according to crank angle were also measured at the entrance of exhaust manifold. The comparisons of exhaust gas flow patterns in the junction and mixing pipe between experimental and computational results were made.
Technical Paper

Design and Development of a Spray-guided Gasoline DI Engine

2007-08-05
2007-01-3531
Adopting the Spray-guided Gasoline Direct Injection (SGDI) concept, a new multi-cylinder engine has designed. The engine has piezo injectors at the central position of its combustion chamber, while sparkplugs are also at the center. The sparkplug location is designed so that the spark location is at the outer boundary of the fuel spray where the appropriate air-fuel mixture is formed. A few important operating parameters are chosen to investigate their effects on the combustion stability and fuel consumption. The final experimental results show a good potential of the SGDI engine; the fuel consumption rate was much less than that of the base Multi Port Injection (MPI) engine at various engine operating conditions.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

Development of an Engine Torquemeter for In-vehicle Application and Parametric Study on Fuel Consumption Contribution

2007-04-16
2007-01-0964
The mechanical energy of an engine is lost by engine friction and in driving the engine's auxiliary components, which is then transferred to transmission. Thus, it is very important to know the exact value of engine friction and the driving torque of engine's auxiliary components in order to reduce fuel consumption of an engine by reducing these losses. And, it is also helpful to know the braking torque of an engine in actual vehicle so as to improve vehicle's driving performance. For these reasons, present study developed an engine torquemeter for in-vehicle application, and measured braking torque of an engine in vehicle and analyzed fuel consumption contributions of engine's auxiliary components.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR

2011-04-12
2011-01-0400
Diesel engines are the most commonly used power train of the freight and public transportations in the world. From the viewpoint of global warming restraint, however, reduction of exhaust emissions from the diesel engine is urgent demand. Stringent emission regulations are being proposed with growing concern on NOx, PM and CO2 emissions. Future emission regulations require advanced emission control technologies, such as SCR(Selective Catalytic Reduction), LNT(Lean NOx Trap) and EGR(Exhaust Gas Recirculation). The EGR is a commonly used technique to reduce emission. In this study, a LP-EGR(Low Pressure Exhaust Gas Recirculation) system was investigated to evaluate its potential on emission reduction and fuel economy improvement, especially for a passenger diesel engine. A 3.0ℓ diesel engine equipped with the LP-EGR system was tested using an in-house control algorithm.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
Technical Paper

Urea-SCR Catalysts with Improved Low Temperature Activity

2011-04-12
2011-01-1315
Urea-SCR systems have become one effective method for meeting the ever tightening NOx emission control regulations for diesel engines. Higher activity of SCR catalysts in the low temperature region is crucial for meeting emission regulations and improving fuel economy. Some of the new catalytic components in the literature have shown good low temperature SCR activity, but they have not been fully confirmed to be durable enough for mobile applications. Fe-zeolite has been widely used in mobile applications due to its wide operating temperature window, but after exposure to large amounts of HCs at low temperatures, it is easily deactivated. We developed new SCR catalysts with improved low temperature activity and improved durability against HC fouling and thermal sintering by combining OSC (oxygen storage component) with Fe-zeolite.
Technical Paper

Hydrogen Effect on the DeNOX Efficiency Enhancement of Fresh and Aged Ag/Al2O3 HC-SCR in a Diesel Engine Exhaust

2011-04-12
2011-01-1278
HC-SCR is more convenient when compared to urea-SCR, since for HC-SCR, diesel fuel can be used as the reductant which is already available onboard the vehicle. However, the DeNOX efficiency for HC-SCR is lower than that of urea-SCR in both low and high temperature windows. In an attempt to improve the DeNOX efficiency of HC-SCR, the effect of hydrogen were evaluated for the fresh and aged catalyst over 2 wt.% Ag/Al₂O₃ using a Euro-4 diesel engine. In this engine bench test, diesel fuel as the reductant was injected directly into the exhaust gas stream and the hydrogen was supplied from a hydrogen bomb. The engine was operated at 2,500 rpm and BMEP 4 bar. The engine-out NOX was around 180 ppm-200 ppm. H₂/NOX and HC₁/NOX ratios were 5, 10, 20, and 3, 6, 9, respectively. The HC-SCR inlet exhaust gas temperatures were around 215°C, 245°C, and 275°C. The catalyst volumes used in this test were 2.5L and 5L for both fresh and aged catalysts.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

Cold-Start Hydrocarbon Speciation and Trap Materials for Gasoline Engines

2018-04-03
2018-01-0940
Efficient hydrocarbon (HC) trap materials have been developed to trap the major emitting HC compounds from gasoline direct injection engines. Online FTIR measurements on different test cycles and catalytic systems showed that AHC, C5 compounds, and CH4 were the most emitted species at cold-start phase (up to 100 sec). Making AHC and C5 as targets for improving the HC light-off, lab scale reactor set-up was established with toluene and iso-pentane feed pumping system along with propane-propene mixture. TGA screening experiments conducted with ex-situ toluene adsorption and the results revealed that BEA type materials have moderate to higher HC trapping temperature and HC storage capacity. In the present investigation, BEA-HS exhibited outstanding stability and trapping ability even after 850 °C hydrothermal aging. PGM and TM based BEA materials were evaluated for HC-TPD experiments with TWC gas composition.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Diesel/Gasoline Dual Fuel Powered Combustion System based on Diesel Compression Ignition Triggered Ignition Control

2013-04-08
2013-01-1718
The author's new approach, diesel and gasoline dual fuel powered combustion system based on diesel CI triggered ignition control, provides not only how key ideas extracted from LTC concept could be established in a small bore HSDI turbocharged diesel engine but also which mechanism works to bring almost same benefits as we have experienced in both conventional diesel combustion and LTC based advanced combustion systems like HCCI, PCCI and PPCI combustions. The combustion system presented in the paper physically combines both mixing controlled diesel compression ignition combustion and gasoline premixed charge combustion in one power generation cycle. Gasoline fuel in the system is provided by the conventional gasoline PFI system firstly into the cylinder in which premixed charge spreads out. In compression stroke, the exact amount of diesel fuel is injected into the highly diluted EGR ambient with premixed gasoline charge.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

2006-10-16
2006-01-3345
In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
X