Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Biomechanics of Seat Belt Design

1972-02-01
720972
This paper discusses the development of adequate criteria and evaluation methods for seat belt restraint design. These criteria should include the effect of seat belts in abdominal injury as well as head injury. It is concluded that belt load limiters and energy-absorbing devices should limit head-to-vehicle contact, ensure that the lap belt maintains proper contact with the bony pelvic girdle, and limit the belt loads. Studies are made of pulse shape and belt fabrics. Currently available mathematical models are used for the studies included in the paper.
Technical Paper

Side Impact Tolerance to Blunt Trauma

1973-02-01
730979
The object of this research program has been to extend the scope of earlier work to include long-duration head impacts and to develop new scaling relationships to allow extrapolation of impact data from infrahuman primates to living humans. A series of living primate side impacts to the head and torso was conducted in parallel with a series of impacts to human cadavers. Dimensional analysis techniques were employed to estimate in vivo human tolerance to side injury. The threshold of closed brain injury to humans was found to be 76 g for a pulse duration of 20 ms and an impact velocity of 43 ft/s (13.2 m/s). The maximum tolerable penetration to the chest was found to be 2.65 in (6.72 cm) for both the left and right sides. Scaling of abdominal injuries to humans was accomplished by employing a factor that relates impact contact area, animal mass, impact force, and pulse duration to injury severity.
Technical Paper

Michigan Injury Criteria Hypothesis and Restraint System Effectiveness Index

1971-02-01
710872
This paper describes an injury criteria model implemented in computer language, and a restraint system effectiveness index for evaluating the degree to which the vehicle environment can prevent or reduce occupant injuries. The need for criteria of this type is based on the fact that if the degree of protection offered to a vehicle occupant by a restraint system or a vehicle interior (a function of the distribution and magnitude of the forces transmitted to the occupant) could be expressed in quantitative terms, then, more meaningful comparisons could be made between restraint configurations, and, areas of needed biomechanical research and statistical accident investigations could be more readily identified on the basis of the sensitivity of the results when the injury or effectiveness criteria are applied. The injury criteria model consists of three parts: 1.
Technical Paper

Door Crashworthiness Criteria

1971-02-01
710864
A study of the biomechanical factors concerned with the design of side structures and doors for crashworthiness has been made. Questions regarding optimum stiffness, location of reinforcing members, effect of armrests, and padding have been answered within the framework of injury criteria models. Results of animal studies, cadaver studies, and anthropometric dummies have been combined to produce injury criteria for lateral impacts to the head, thorax, and abdomen. Impacts were applied utilizing a specially designed “air gun” in a laboratory environment emphasizing reproducibility and control. Full-scale crash simulations were performed on an impact sled to verify the results of the more specialized tests and analyses. Scaled models of current production doors were used in the animal series. Scaling relationships for various species of animals have been developed and extrapolated to man. Significant differences in right and left side tolerances to impact were noted and detailed.
Technical Paper

Predictions of Mathematical Models Compared with Impact Sled Test Results Using Anthropometric Dummies

1970-02-01
700907
Mathematical models of the human body subjected to an impact environment have been developed by many research groups in industry, government, private research organizations, and universities. In most cases, the models have not been verified by or compared with experimental results. The purpose of this paper is to show comparisons between the two- and three-dimensional crash victim simulators, which have been developed at the Highway Safety Research Institute of The University of Michigan, and front and side impact sled test results using anthropometric dummies.
Technical Paper

Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles

1973-02-01
730975
Basic physical characteristics of the neck have been defined which have application to the design of biomechanical models, anthropometric dummies, and occupant crash protection devices. The study was performed using a group of 180 volunteers chosen on the basis of sex, age (18-74 years), and stature. Measurements from each subject included anthropometry, cervical range-of-motion (observed with both x-rays and photographs), the dynamic response of the cervical flexor and extensor muscles to a controlled jerk, and the maximum voluntary strength of the cervical muscles. Data are presented in tabular and graphic form for total range-of-motion, cervical muscle reflex time, decelerations of the head, muscle activation time, and cervical muscle strength. The range-of-motion of females was found to average 1-12 deg greater than that of males, depending upon age, and a definite degradation in range-of-motion was observed with increasing age.
X