Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

Modeling of Transient Aerodynamic Forces based on Crosswind Test

2016-04-05
2016-01-1577
The aerodynamic stability of energy-saving, lightweight, and low-drag vehicles is reduced by crosswind disturbances. In particular, crosswinds cause unsteady motion in vehicles with low-drag body shapes due to aerodynamic yaw moment. To verify fluctuations in the unsteady aerodynamic forces of a vehicle, a direct measurement method of these forces in a crosswind test was established using inertial force and tire load data. The former uses an inertia sensor comprised of a gyro, acceleration sensor, and GPS sensor, and the latter uses a wheel force sensor. Noise in the measurement data caused by the natural frequency of the tires was reduced using a spectral subtraction method. It was confirmed that aerodynamic data measured in the crosswind test corresponded to wind tunnel test data. Numerical expressions were defined to model the unsteady aerodynamic forces in a crosswind.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Journal Article

Development of Test Method to Evaluate Aggressiveness Focusing on Stiffness and Interaction: Part 2

2011-04-12
2011-01-0547
Test methods to evaluate vehicle compatibility are being studied worldwide. Compatibility performance is central in securing mutual protection in collisions between large and small vehicles. To consider compatibility performance, good structural interaction and stiffness matching are important. A test method using a novel moving deformable barrier (MDB) was developed to evaluate compatibility performance that includes consideration of both structural interaction and stiffness matching. This new barrier has the following features to represent an offset vehicle-to-vehicle collision with a compact car. The barrier width is divided at the lower rail position of the compact car, and the layer that simulates the characteristics of vehicle sections toward the interior is harder than the outward layer. This varying stiffness of the MDB helps simulate the horizontal interaction performance that occurs in real-world crashes.
Journal Article

Development of a Test Method to Evaluate both Stiffness and Interaction of Compatibility Performance

2008-04-14
2008-01-0816
Compatibility is important in order to secure mutual protection in collisions between large and small vehicles. To enhance compatibility, good structural interaction and stiffness matching are important elements. This paper proposes a test method that uses a moving deformable barrier (MDB) to evaluate compatibility performance that includes not only structural interaction but also stiffness matching. This new deformable barrier is aimed at the simulation of offset Vehicle-to-Vehicle collisions with compact vehicles. This simulation is based on real world crash research, and takes into account three separate load interactions between the impacting vehicles. These areas of interaction include the impacting vehicle's power unit to the opposing vehicle's wheel, the impacting vehicle's lower rail to the opposing vehicle's lower rail, and the impacting vehicle's wheel to the opposing vehicle's power unit.
Technical Paper

Coasting Technology for Real-World Fuel Economy Improvement of a Hybrid Vehicle

2020-04-14
2020-01-1195
Automobile manufactures need to adopt new technologies to meet global CO2 (carbon dioxide) emission regulations and better fuel efficiency demands from customers. Also, the production cost should be as low as possible for an affordable vehicle. Therefore, it is advantageous for OEMs to develop fuel efficient technologies which can be controlled by software without additional hardware costs. The coasting control is a fuel efficiency improvement technology that can be implemented by the change of vehicle software only. The coasting control is a technology that reduces the driving resistance (Deceleration) when the driver releases the gas pedal. This technology leads to reducing the energy required for the vehicle to drive and results in improving the real-world fuel economy. In an internal combustion engine (ICE) vehicle, the coasting state is achieved by changing the gear to neutral, and the effect has been discussed and clarified by many previous studies.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Exhaust Emissions Simulator for Verification of Extremely Low Emission Measurement Systems

2007-04-16
2007-01-0316
With the support of Horiba and Horiba STEC, Toyota Motor Corporation has developed an exhaust emissions simulator to verify the accuracy of extremely low emissions measurement systems. It can reliably verify the accuracy (correlation) of each SULEV emission measurement system to within 5% under actual conditions. The simulator's method of simulating SULEV gasoline engine cold-start emissions is to inject bottled gases with known concentrations of each emission constituent to the base gas, which is clean exhaust gas from a SULEV vehicle with new fully warmed catalysts. First, the frequencies and dynamic ranges of the SULEV cold-start emissions were analyzed and the method of 2 injecting the bottled gases was considered based on the results of that analysis. A high level of repeatability and accuracy was attained for all injection flow ranges in the SULEV cold-start emission simulation by switching between high-response digital Mass Flow Controllers (MFCs) of different full scales.
Technical Paper

Development of Robust Design Method in Pedestrian Impact Test

2007-04-16
2007-01-0881
This paper describes that a method has been developed to estimate the range of the scatter of Head Injury Criterion (HIC) values in pedestrian impact tests, which could help to reduce the range of the scatter of HIC values by applying the stochastic method for Finite Element (FE) analysis. A major advantage of this method is that it enables the range of scatter of HIC values to be estimated and to explain the mechanics of the behavior. The test procedure of pedestrian impact allows some tolerances for the resultant conditions of impact such that the distance of actual impact location from the selected point is within 10 mm and the impact velocity is within ±0.7 km/h [1]. A HIC value calculated by impact simulation under a deterministic impact condition with the nominal input data does not necessarily represent the variation of measured data in impactor tests.
Technical Paper

Study of Vehicle-to-Vehicle Collision Performance Based on Balance of Front End Strength

2007-04-16
2007-01-1175
Compatibility in vehicles crashes has been studied worldwide in recent years. In cases where primary energy-absorbing structures such as front end members were bypassed in front-to-front collisions, energy-absorbing efficiency declined compared to cases when no such bypassing occurred. A bumper beam that connects the front end members in the transverse direction can help prevent bypassing of primary energy-absorbing structures. The strength balance between front end members and a bumper beam was studied in this paper. It was verified in front-to-front offset vehicle collision tests that crash energy can be efficiently absorbed by balancing the strength of the bumper beam with the compression strength of the front end members.
Technical Paper

Method for Prediction of Engine Oil Aeration Rate

2008-04-14
2008-01-1361
Due to the advancement of engine performance, large volumes of oil circulate within a narrow internal space of passenger car engines. This phenomenon often leads to oil foaming and aeration problems. In this study, we developed a method for predicting the rate of engine oil aeration from specific engine parameters and running conditions. Engine tests show that the rate of oil aeration is stable throughout the process between bubble release from the oil surface and aeration. Additionally, bubble size affects its release rate from the oil surface. Utilizing both of these assumptions, our prediction method calculates aeration rate by evaluating bubble number and size.
Technical Paper

Development of Cylinder Pressure Measurement System Using Adaptive Calculation

2008-04-14
2008-01-1009
This paper discusses the development of a system enabling real-time measurements of combustion pressure in an internal combustion engine, using a comparatively low-cost polycrystalline piezoelectric element. Tests conducted using a mass production vehicle showed that by using the measured cylinder pressure, the status of combustion could be measured across the entire range of driving conditions, enabling accurate detection of misfires and knocking. To date, despite their comparatively low cost, the use of piezoelectric elements in mass production vehicles has represented a challenge, because the temperature characteristics of the elements in the use environment, age degradation, and other factors may cause variations in output. This research therefore studied the variation in sensor output in terms of each causal factor.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Development of Omni-directional Injury Criteria for a Pedestrian Dummy for Evaluating Rib Fracture

2009-04-20
2009-01-1210
Pedestrian - motor vehicle collisions account for approximately 15% of all traffic fatalities in Europe and the US, and 35% or more in Japan and Asian countries. Several studies have addressed this issue, such as the EEVC study. In the development of the test methods, body region priorities are mainly based on studies of pedestrian collisions with passenger vehicles. However recently, the populations of SUVs and LTVs are increasing in many countries. Pedestrian collision data indicate that thoracic and upper abdominal injuries are also frequent in pedestrian collisions where these kinds of vehicles are involved. However, evaluation methods for pedestrian torso injuries are not currently available. This paper describes a study for the evaluation of pedestrian thoracic and upper abdominal injuries using the POLAR II pedestrian dummy.
Technical Paper

Measurement of Oil Film Pressure on a Crank Shaft Journal in a Horizontally-Opposed Cylinder Engine

2009-04-20
2009-01-0415
Reciprocating engines in GA (General Aviation) are seeking for a smaller, lighter and a more reliable solution. The authors have succeeded in accurately measuring the load distribution in an actual engine utilizing a thin-film sensor which can measure loads on various sliding surfaces. Moreover, a novel test rig was developed for a completely new attempt to reproduce those measured loads in the engine to provide feedback for lightweight design. This paper introduces an example of the lightweight design in the peripheral of a crankshaft journal.
Technical Paper

Honda Next Generation Speech User Interface

2009-04-20
2009-01-0518
Honda, working closely with IBM for their model year 2009 introduction, will be releasing the next step in the evolution of speech user interfaces in vehicles. The new Honda vehicles will include the leading edge Free Form Command (FFC) technology developed by IBM as part of its IBM Embedded ViaVoice (EVV) product line. At its core, Free Form Commands improve the overall end-user experience by creating a system that is easier to use out of the box by increasing the overall usability of the system. Free Form Commands employ an innovative approach which allows Statistical Language Model technology to be deployed within the constraints of an embedded computing environment. This technology allows users to speak commands that are not part of a predefined fixed set of phrases, as is required in today’s vehicles, but instead speak command phrases that match the application functional area they are targeting.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

New Frictional Testing Method for Stamping Formability - Development of Dr. STAMP (Direct & Rapid, Surface Tribology Analyzing Method for Press) Method -

2003-10-27
2003-01-2812
Galvannealed steel sheet (GA) is very extensively used for vehicle panels. However ζ-phase (FeZn13) in GA coat causes poor stamping formability. Previously, there were no easy methods to evaluate the influence of ζ-phase on the frictional characteristics other than the X-ray diffraction method. This study will discuss the development of a new testing method: Dr. STAMP Method that is both efficient and convenient with pin-on-disc tester.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
X